Advancements in cherry winter grafting with cold atmospheric plasma treatments

18 Dec 2023
1966

Approximately 15-20% of grafted plants fail to take root due to the lack of fusion between the scion and the rootstock; therefore, the study and implementation of techniques aimed at improving the rooting speed and increasing the quality of the resulting plants is a task whose results can lead to an important productive improvement.

Currently, numerous physical techniques are employed in the treatment of agricultural crops. These techniques include treatment with magnetic fields, exposure to microwave radiation and others that influence the physiological and biochemical processes of seeds and plants.

They promote greater vegetative growth, as well as higher yields and improved crop quality. One potential approach to improve fusion between scions and rootstocks involves the application of plasma-activated water or cold atmospheric plasma (CAP) treatment, generally recognised for its effectiveness in deactivating bacteria.

It consists of ionised gas with a low ion and particle temperature but a high electron temperature. The study conducted by researchers at the Federal Scientific Agroengineering Centre and the Prokhorov Institute of General Physics in Moscow (Russia) describes a new technique for winter grafting of the sweet cherry variety 'Revna'.

The innovation of this method lies in the use of a portable device designed by the authors to produce cold plasma and a plasma-treated solution. The application of low-temperature plasma to the cut surfaces of the plant cuttings showed as first effect smoothing of the surface, reduced surface roughness and, in addition, the treatment facilitates the reabsorption of the insulating layer, which hinders the growth process due to its composition of decomposed products and dead cells.

Image 1: The proposed method involves a DBD CAP or PTS cold plasma treatment on the cutting surface of the graft and rootstock prior to grafting. The rootstock-graft combinations are then stored in cold storage for 2 months. This is followed by transplanting into the greenhouse.

It was determined that cold plasma treatment induces a 17-28% reduction in the growth length of 'Revna' cherry plants, accompanied by a 20-23% increase in root collar diameter. Compared to the control, exposure to plasma or plasma-activated water resulted in an average decrease of 14% in electrical resistivity in the grafting point.

This decrease suggested that the rootstock and scion transport fibres fused more effectively. Additional methodologies were suggested and outlined to facilitate winter grafting of fruit crops.

Image 2: Mobile device for the creation of cold plasma (CAP). 1: replaceable module on the surface of which the CAP is created; 2: hardware control block for CAP DBD creation modes.

It was possible to improve the quality of one-year-old plants obtained by accelerating regenerative processes at graft sites by describing exposure to a cold plasma source, exposure times and concentrations of plasma-treated solutions.

In conclusion, 15-45 seconds of cold plasma exposure prior to grafting on fresh sections of scions and rootstocks increases root collar diameter and growth length. There is considerable potential for CAP implementation in agriculture, as this approach to improve plant productivity has several advantages over similar physical methods, including plant safety, scalability, and ease of use.

Source: Zmailov, A.; Khort, D.; Filippov, R.; Pishchalnikov, R.Y.; Simakin, A.V.; Shogenov, Y., Improvement of Winter Graft Techniques Using Cold Plasma and Plasma-Treated Solution on Cherry Cultures. Appl. Sci. 12, 2022, 4953. https://doi.org/10.3390/app12104953.

Image: The Orchard Project

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Diagnosis and management of soil acidity in Chilean cherry orchards

Tech management

24 Dec 2024

Developing a fruit-growing project in southern Chile is different from what happens in other production areas. Here, a warm humid temperate climate and volcanic soils dominate, which result in late production and risks of climatic events during critical phenological periods.

Sweet Aryana and Santina compared in Chile

Varieties

27 Sep 2024

Lorena Pinto Almeida, product manager for Stone Fruits and Cherries at A.N.A. Chile, shares images of the cv. Sweet Aryana (d) PA1UNIBO on the left and Santina on the right, taken on September 11, 2024, in a commercial orchard located in El Huique, Santa Cruz, VI Region, Chile.

In evidenza

The Chilean model and prospects for cherry growth in Peru

Production

12 Dec 2025

In the last decade, Chile turned cherries into a premium export worth over US$ 1.8 billion, driven by ideal climate, advanced technical management and booming Chinese demand. Andean areas of Peru show potential, but would require infrastructure and adapted strategies.

Pre-harvest treatments with chitosan and salicylic acid to improve the quality and storability of sour cherries

Quality

12 Dec 2025

A Ukrainian study shows that a pre-harvest treatment with chitosan and salicylic acid extends sour cherry shelf life up to 30 days, reducing weight loss, defects, and microbial contamination. It enhances fruit storage, quality and marketability post-harvest.

Tag Popolari