Advancements in cherry winter grafting with cold atmospheric plasma treatments

18 Dec 2023
733

Approximately 15-20% of grafted plants fail to take root due to the lack of fusion between the scion and the rootstock; therefore, the study and implementation of techniques aimed at improving the rooting speed and increasing the quality of the resulting plants is a task whose results can lead to an important productive improvement.

Currently, numerous physical techniques are employed in the treatment of agricultural crops. These techniques include treatment with magnetic fields, exposure to microwave radiation and others that influence the physiological and biochemical processes of seeds and plants.

They promote greater vegetative growth, as well as higher yields and improved crop quality. One potential approach to improve fusion between scions and rootstocks involves the application of plasma-activated water or cold atmospheric plasma (CAP) treatment, generally recognised for its effectiveness in deactivating bacteria.

It consists of ionised gas with a low ion and particle temperature but a high electron temperature. The study conducted by researchers at the Federal Scientific Agroengineering Centre and the Prokhorov Institute of General Physics in Moscow (Russia) describes a new technique for winter grafting of the sweet cherry variety 'Revna'.

The innovation of this method lies in the use of a portable device designed by the authors to produce cold plasma and a plasma-treated solution. The application of low-temperature plasma to the cut surfaces of the plant cuttings showed as first effect smoothing of the surface, reduced surface roughness and, in addition, the treatment facilitates the reabsorption of the insulating layer, which hinders the growth process due to its composition of decomposed products and dead cells.

Image 1: The proposed method involves a DBD CAP or PTS cold plasma treatment on the cutting surface of the graft and rootstock prior to grafting. The rootstock-graft combinations are then stored in cold storage for 2 months. This is followed by transplanting into the greenhouse.

It was determined that cold plasma treatment induces a 17-28% reduction in the growth length of 'Revna' cherry plants, accompanied by a 20-23% increase in root collar diameter. Compared to the control, exposure to plasma or plasma-activated water resulted in an average decrease of 14% in electrical resistivity in the grafting point.

This decrease suggested that the rootstock and scion transport fibres fused more effectively. Additional methodologies were suggested and outlined to facilitate winter grafting of fruit crops.

Image 2: Mobile device for the creation of cold plasma (CAP). 1: replaceable module on the surface of which the CAP is created; 2: hardware control block for CAP DBD creation modes.

It was possible to improve the quality of one-year-old plants obtained by accelerating regenerative processes at graft sites by describing exposure to a cold plasma source, exposure times and concentrations of plasma-treated solutions.

In conclusion, 15-45 seconds of cold plasma exposure prior to grafting on fresh sections of scions and rootstocks increases root collar diameter and growth length. There is considerable potential for CAP implementation in agriculture, as this approach to improve plant productivity has several advantages over similar physical methods, including plant safety, scalability, and ease of use.

Source: Zmailov, A.; Khort, D.; Filippov, R.; Pishchalnikov, R.Y.; Simakin, A.V.; Shogenov, Y., Improvement of Winter Graft Techniques Using Cold Plasma and Plasma-Treated Solution on Cherry Cultures. Appl. Sci. 12, 2022, 4953. https://doi.org/10.3390/app12104953.

Image: The Orchard Project

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Technical meeting on cherry tree varieties and defence: preview of results from Agrion Foundation

Events

12 Jul 2024

Agrion researchers Davide Nari and Valentina Roera presented the latest developments in cherry and apricot variety comparisons, while Francesca Pettiti and Luca Nari showed updates from the Forficula Auricolaria and Drosophila Suzukii trials.

Differences in sweet cherry pruning by cultivars

Rootstocks

18 Dec 2023

The most important factor in spindle formation is to maintain the dominance of the central leader. The central crowns can be cut back in the future, after the formation of fruit-bearing branches below the crown ends.

In evidenza

Argentina: low volumes compared to last year, but quality ensures exports

Markets

22 Jan 2025

‘This season will not be bad for Argentinian exporters. Prices were maintained thanks to the quality of the cherries. We lacked volume, which unfortunately affected producers in Chubut,' said CAPCI Director General Aníbal Caminiti.

Protection of plants with multifunctional covers ensures sustainable management of cherry orchards

Covers

22 Jan 2025

A four-year project has started in 2021 to investigate the most innovative physical protection methods available. The activity is carried out thanks to a partnership between Consorzio della Ciliegia IGP di Vignola, Consorzio Fitosanitario di Modena and the University of Bologna.

Tag Popolari