The effect of different doses of indol-3-butyric acid (IBA) on the rooting of cherry rootstocks

01 Aug 2023
4311

Numerous studies have been conducted over long periods of time to understand (and, subsequently, improve) rootstock propagation. This has led to positive results in propagating cuttings in species that are not inherently difficult to root. Subsequently, the use of phytoregulators facilitated the acceleration of the vegetative propagation process, thus enabling faster propagation of fruit varieties and their rootstocks.

Propagation by cuttings involves the preparation of plant parts, such as leaves, branches or root sections, which are detached from the mother plant and then treated with growth regulators and placed in an environment with suitable humidity and temperature conditions to facilitate root formation. The plant acquired by this method has all the traits inherent in the progenitor plant.

The technique of plant propagation by cuttings can be used for a wide range of tree species, which can be harvested by three distinct stages: softwood cuttings, semi-hardwood cuttings, and hardwood cuttings. Plant growth regulators, including indol-3-acetic acid (IAA), indol-3-butyric acid (IBA) and alpha-naphthalenacetic acid (NAA), are commonly used in the vegetative propagation process.

Growth regulators actively contribute to increasing rooting rate and reducing the rooting duration phase. In the specific case of clonal rootstocks, the part related to their vegetative propagation is of considerable importance. In the event that vegetative propagation of a clonal rootstock proves difficult, the spread of such a rootstock may be unattainable, despite its commendable characteristics.

Therefore, it is imperative to explore the potential of vegetative propagation of rootstocks. In this particular context, there are various research groups focused on improving and optimizing the process of propagation by cuttings in fruiting plants.

The purpose of the study conducted by researchers at the Black Sea Agricultural Research Institute (Turkey) was to examine the impact of different concentrations of indole-3-butyric acid (IBA) on the rooting process of softwood cuttings from potential rootstock candidates, including sweet cherry, sour cherry and Prunus mahaleb genotypes.

The experiment was conducted in a greenhouse equipped with underfloor heating and mist. Softwood cuttings were harvested in June and treated with different concentrations of IBA: 500, 1000 and 2000 parts per million, respectively. Perlite was used as propagation medium, while the rooting medium was disinfected with methyl bromide before planting.

The application of IBA had a statistically significant positive impact on several parameters, including rooting rate, number of roots, number of branched roots, and average root length. Based on the data acquired from the study, it was seen that the most significant root formation rate (59%) was achieved with a dosage of 1,000 parts per million of indol-3-butyric acid (IBA).

In conclusion, this study showed that the rooting rate and root length of cuttings from cherry rootstock candidate genotypes were influenced by the concentration of indol-3-butyric acid (IBA).

Specifically, a concentration of 1000 parts per million of IBA was found to be optimal for promoting rooting rate and root length. In addition, to increase the number of roots and branching, a concentration of 2000 ppm IBA was identified as the most suitable dosage.

Source: Aydın, E. & Er, E. (2023). The effect of different IBA doses on rooting in soft-wood cuttings of rootstock candidate sweet cherry, sour cherry and mahaleb genotypes . Turkish Journal of Food and Agriculture Sciences , 5 (1) , 48-54 . DOI: 10.53663/turjfas.1297196

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Cherries 2025: CTIFL innovations and research in Balandran for producers in France

Events

11 Aug 2025

Balandran's CTIFL presented the latest innovations in variety, irrigation and orchard management to the 2025 cherry growers in France. Data, research projects and technologies to optimise quality, sustainability and profitability of cherry cultivation.

Organic cherries: early delay in California, but higher volumes and quality by 2023

Production

05 Jun 2024

Catherine Gipe-Stewart, marketing director of Domex Superfresh Growers, reported that larger fruit is expected this season, with a longer harvest time than in 2023, due to the more favourable temperatures and growing conditions.

In evidenza

The influence of rootstock on yield and nutritional value of sweet cherries: a case study on cv. “Grace Star” from Serbia

Rootstocks

25 Nov 2025

A recent Serbian study tested 14 cherry rootstocks on heavy, acidic soils without irrigation. Results show how each rootstock impacts fruit size, sugars, acidity and antioxidants, helping farmers make better rootstock-cultivar choices for quality yield.

New cherry varieties tested in France in 2025: CTIFL research insights

Varieties

25 Nov 2025

In 2025, the CTIFL research center in La Tapy (France) evaluated 20 cherry varieties, focusing on fruit size, productivity, firmness, and resistance to cracking. Researcher Aliénor Royer-Lanoote presented key data to guide cherry orchard planning across European growing regions.

Tag Popolari