Un sistema di visione artificiale per valutare la qualità delle ciliegie

19 dic 2024
394

Colore, dimensione, forma e consistenza del frutto sono fattori di qualità importanti che possono influenzare significativamente la qualità finale del prodotto. Prima della commercializzazione, i frutti vengono selezionati e per queste operazioni le aziende sono sempre alla ricerca di strumenti non distruttivi e veloci.

I metodi visivi sono interessanti perchè possono misurare le caratteristiche qualitative critiche del colore e della forma. Il Sistema di Visione Artificiale (in inglese, Computer Vision System - CVS) è un'intelligenza artificiale utilizzata per diagnosticare, separare e classificare sia frutta che verdura.

È un metodo veloce, non distruttivo e affidabile che può estrarre molte informazioni sulle caratteristiche fisiche e chimiche dei frutti. Negli ultimi tempi, ci sono stati significativi miglioramenti nelle tecnologie di imaging e nella loro analisi, che hanno aumentato l'accuratezza e l'efficienza dei Sistemi di Visione Artificiale.

In ciliegio, il colore della buccia del frutto è un indicatore vitale della sua maturità e qualità, influenzato dalla concentrazione di antociani e dal rapporto tra solidi solubili totali e acidità totale al momento della raccolta. Le ciliegie dolci sono suscettibili ai fattori ambientali, specialmente ai cambiamenti di temperatura, e perdono rapidamente la loro qualità dopo la raccolta e durante il trasporto e lo stoccaggio.

Le ciliegie dolci possono subire una perdita di qualità post-raccolta come perdita di consistenza e di acidità, essiccazione del picciolo, imbrunimento della buccia e malattie fungine. Il confezionamento attivo e i trattamenti di rivestimento dei frutti sono tecnologie cruciali che rilasciano ingredienti attivi per proteggere i prodotti dalla degradazione microbica e aumentarne la durata di conservazione.

Immagine 1: A) Immagine RGB, (B) Immagine senza sfondo, (C) Immagine grigia e (D) Immagine binaria. La preelaborazione delle immagini è stata eseguita con il software MATLAB R2019a (Mathworks, USA). In primo luogo, i canali di colore R, G e B sono stati estratti separatamente da ciascuna immagine dopo la segmentazione dell'immagine, la trasformata di Laplace e la rimozione del rumore con l'aiuto di un filtro mediano (b). Le immagini sono state poi convertite da RGB a scala di grigi (c). Successivamente, l'immagine in scala di grigi è stata convertita in un'immagine binaria con valori dei pixel di 0 e 1 (d) utilizzando l'istogramma dell'immagine e il livello di soglia ottenuto per tentativi. Questa conversione ha permesso di separare facilmente l'area sana da quella difettosa. Fonte: Yashar Shahedi et al., 2024.La ricerca condotta al Dipartimento di Scienze e Ingegneria Alimentare dell’Università di Zanjan (Iran) ha impiegato le caratteristiche visive acquisite dalle immagini RGB per studiare le alterazioni nei difetti superficiali, stimare le proprietà fisiche e chimiche e classificare la qualità delle ciliegie dolci durante la loro conservazione secondo diversi protocolli di stoccaggio.

Sono stati anche impiegati i modelli ANN (Rete Neurale Artificiale) e ANFIS (Sistema di Inferenza Neuro-Fuzzy Adattivo). I risultati hanno mostrato che i modelli ANN e ANFIS stimano accuratamente i gradi di qualità delle ciliegie dolci in tutti e quattro gli algoritmi con oltre il 90% di precisione. Con l'aumentare del tempo di conservazione, i danni superficiali delle ciliegie dolci sono aumentati.

Tuttavia, il trattamento di rivestimento e l'aumento della concentrazione dei coatings hanno ridotto i tassi di questi danni. I risultati hanno indicato che i modelli ANFIS e ANN hanno dimostrato previsioni di successo delle alterazioni fisiche e chimiche che si verificano nelle ciliegie dolci durante la conservazione, sfruttando le caratteristiche di colore e texture basate su immagini, mostrando al contempo una notevole precisione nella loro modellazione.

Lo studio dimostra che i cambiamenti fisici e chimici delle ciliegie dolci possono essere previsti utilizzando i modelli CVS, ANFIS e ANN. L'elevata capacità diagnostica dell'algoritmo ne consente l'uso industriale per processi di diagnostica, controllo e classificazione.

Fonte: Yashar Shahedi, Mohsen Zandi, Mandana Bimakr, A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry, Heliyon, Volume 10, Issue 20, 2024, e39484, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e39484.
Immagini: myfruit.it;  Yashar Shahedi et al 2024.

Melissa Venturi
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Sarà record per la produzione di ciliegie mondiali: il 2025 si aspetta 5 milioni di tonnellate

Mercati

19 set 2024

La produzione mondiale della prossima stagione sarà di 4,958 milioni di tonnellate. La cifra rappresenta una crescita dell'1% su base annua e del 62% rispetto ai numeri di un decennio fa. Le esportazioni sono previste a 759.000 tonnellate, quasi pari al volume dello scorso anno,

Ciliegie della Patagonia: tecnologie e gestione per migliorare la qualità e ridurre le perdite

Mercati Produzione Rassegna Stampa

24 gen 2024

Grazie alla loro qualità differenziata, queste ciliegie hanno ottenuto la prima Denominazione di Origine della provincia. Inoltre, le ciliegie prodotte a Los Antiguos sono le ultime ad essere raccolte nell'emisfero meridionale, nel periodo tra dicembre e metà febbraio.

In evidenza

L’intelligenza artificiale migliora la selezione delle ciliegie: più qualità e meno sprechi

Post-raccolta​

31 mar 2025

L'intelligenza artificiale sta rivoluzionando la selezione delle ciliegie, garantendo maggiore precisione, riduzione degli sprechi e qualità superiore. Scopri come le tecnologie avanzate come il deep learning ottimizzano il confezionamento e migliorano la produttività.

Successo dei workshop australiani sulla gestione della vigoria nel ciliegio

Rassegna Stampa

31 mar 2025

Scopri i risultati dei workshop sulla gestione del vigore delle ciliegie in Australia, con aggiornamenti da Tasmania, Victoria, South Australia e NSW. Esperti internazionali e innovazioni per ottimizzare la coltivazione. Leggi di più su tecniche e strategie vincenti.

Tag Popolari