Un sistema di visione artificiale per valutare la qualità delle ciliegie

19 dic 2024
1401

Colore, dimensione, forma e consistenza del frutto sono fattori di qualità importanti che possono influenzare significativamente la qualità finale del prodotto. Prima della commercializzazione, i frutti vengono selezionati e per queste operazioni le aziende sono sempre alla ricerca di strumenti non distruttivi e veloci.

I metodi visivi sono interessanti perchè possono misurare le caratteristiche qualitative critiche del colore e della forma. Il Sistema di Visione Artificiale (in inglese, Computer Vision System - CVS) è un'intelligenza artificiale utilizzata per diagnosticare, separare e classificare sia frutta che verdura.

È un metodo veloce, non distruttivo e affidabile che può estrarre molte informazioni sulle caratteristiche fisiche e chimiche dei frutti. Negli ultimi tempi, ci sono stati significativi miglioramenti nelle tecnologie di imaging e nella loro analisi, che hanno aumentato l'accuratezza e l'efficienza dei Sistemi di Visione Artificiale.

In ciliegio, il colore della buccia del frutto è un indicatore vitale della sua maturità e qualità, influenzato dalla concentrazione di antociani e dal rapporto tra solidi solubili totali e acidità totale al momento della raccolta. Le ciliegie dolci sono suscettibili ai fattori ambientali, specialmente ai cambiamenti di temperatura, e perdono rapidamente la loro qualità dopo la raccolta e durante il trasporto e lo stoccaggio.

Le ciliegie dolci possono subire una perdita di qualità post-raccolta come perdita di consistenza e di acidità, essiccazione del picciolo, imbrunimento della buccia e malattie fungine. Il confezionamento attivo e i trattamenti di rivestimento dei frutti sono tecnologie cruciali che rilasciano ingredienti attivi per proteggere i prodotti dalla degradazione microbica e aumentarne la durata di conservazione.

Immagine 1: A) Immagine RGB, (B) Immagine senza sfondo, (C) Immagine grigia e (D) Immagine binaria. La preelaborazione delle immagini è stata eseguita con il software MATLAB R2019a (Mathworks, USA). In primo luogo, i canali di colore R, G e B sono stati estratti separatamente da ciascuna immagine dopo la segmentazione dell'immagine, la trasformata di Laplace e la rimozione del rumore con l'aiuto di un filtro mediano (b). Le immagini sono state poi convertite da RGB a scala di grigi (c). Successivamente, l'immagine in scala di grigi è stata convertita in un'immagine binaria con valori dei pixel di 0 e 1 (d) utilizzando l'istogramma dell'immagine e il livello di soglia ottenuto per tentativi. Questa conversione ha permesso di separare facilmente l'area sana da quella difettosa. Fonte: Yashar Shahedi et al., 2024.La ricerca condotta al Dipartimento di Scienze e Ingegneria Alimentare dell’Università di Zanjan (Iran) ha impiegato le caratteristiche visive acquisite dalle immagini RGB per studiare le alterazioni nei difetti superficiali, stimare le proprietà fisiche e chimiche e classificare la qualità delle ciliegie dolci durante la loro conservazione secondo diversi protocolli di stoccaggio.

Sono stati anche impiegati i modelli ANN (Rete Neurale Artificiale) e ANFIS (Sistema di Inferenza Neuro-Fuzzy Adattivo). I risultati hanno mostrato che i modelli ANN e ANFIS stimano accuratamente i gradi di qualità delle ciliegie dolci in tutti e quattro gli algoritmi con oltre il 90% di precisione. Con l'aumentare del tempo di conservazione, i danni superficiali delle ciliegie dolci sono aumentati.

Tuttavia, il trattamento di rivestimento e l'aumento della concentrazione dei coatings hanno ridotto i tassi di questi danni. I risultati hanno indicato che i modelli ANFIS e ANN hanno dimostrato previsioni di successo delle alterazioni fisiche e chimiche che si verificano nelle ciliegie dolci durante la conservazione, sfruttando le caratteristiche di colore e texture basate su immagini, mostrando al contempo una notevole precisione nella loro modellazione.

Lo studio dimostra che i cambiamenti fisici e chimici delle ciliegie dolci possono essere previsti utilizzando i modelli CVS, ANFIS e ANN. L'elevata capacità diagnostica dell'algoritmo ne consente l'uso industriale per processi di diagnostica, controllo e classificazione.

Fonte: Yashar Shahedi, Mohsen Zandi, Mandana Bimakr, A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry, Heliyon, Volume 10, Issue 20, 2024, e39484, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e39484.
Immagini: myfruit.it;  Yashar Shahedi et al 2024.

Melissa Venturi
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Formazione degli alberi nei frutteti stretti: il progetto NOS in Australia

Impianti

23 set 2025

Tecniche avanzate di formazione degli alberi da frutto nei frutteti stretti: rimozione dei germogli, cordoni orizzontali e leader verticali per ciliegio, susino, melo, pero e nettarina. Il progetto NOS è attivo in Victoria, South Australia, Western Australia e NSW.

Le ciliegie della Tasmania raggiungono Taiwan per il Capodanno lunare

Mercati

17 gen 2025

Un evento di lancio per celebrare l'inizio ufficiale della stagione si è tenuto l'8 gennaio a Taipei. L'evento ha riunito i principali rappresentanti della Tasmania, Fruit Growers Tasmania, Cherry Growers Australia e Austrade, oltre a importatori e acquirenti taiwanesi.

In evidenza

Dinamiche e strategie dei paesi emergenti della cerasicoltura mondiale

Produzione

14 nov 2025

Il mercato globale delle ciliegie cresce con tassi record: Turchia, Cile e Uzbekistan guidano l’espansione produttiva e commerciale. Focus su esportazioni, rese agronomiche e mercati di destinazione tra Europa, Asia e America Latina. Scopri tutti i dati chiave aggiornati.

Droni e sensori: come le ciliegie diventano più attraenti con l’innovazione tecnologica

Gestione

14 nov 2025

In Cile, un sistema avanzato di sensori, droni e AI rivoluziona la cerasicoltura: monitoraggio in tempo reale, previsione della maturazione e gestione ottimizzata delle ciliegie grazie a modelli predittivi validati in frutteti produttivi. Un futuro digitale per il settore.

Tag Popolari