A computer vision system to assess the quality of cherries

19 Dec 2024
1506

Colour, size, shape and texture of the fruit are important quality factors that can significantly influence the final quality of the product. Before marketing, the fruit is sorted and companies are always looking for non-destructive and fast tools for this. Visual methods are interesting because they can measure the critical quality characteristics of colour and shape.

The Computer Vision System (CVS) is an artificial intelligence used to diagnose, separate and classify both fruit and vegetables. It is a fast, non-destructive and reliable method that can extract a lot of information about the physical and chemical characteristics of fruit. In recent times, there have been significant improvements in imaging technologies and their analysis, which have increased the accuracy and efficiency of Computer Vision Systems.

In cherry, the colour of the fruit skin is a vital indicator of its ripeness and quality, influenced by the concentration of anthocyanins and the ratio of total soluble solids to total acidity at harvest. Sweet cherries are susceptible to environmental factors, especially changes in temperature, and rapidly lose their quality after harvest and during transport and storage.

Sweet cherries can suffer post-harvest quality loss such as loss of firmness and acidity, petiole drying, skin browning and fungal diseases. Active packaging and fruit coating treatments are crucial technologies that release active ingredients to protect products from microbial degradation and increase their shelf life.

Image 1:A) RGB image, (B) Image without background, (C) Gray image, and (D) Binary image. The preprocessing for the images accomplished with using MATLAB R2019a software (Mathworks, USA). Firstly, the R, G, and B color channels were extracted separately from each image after image segmentation, Laplace transforms, and noise removal with the help of a Median filter (b). The images were then converted from RGB to Grayscale (c). After that, the grayscale image was converted to a binary image with pixel values of 0 and 1 (d) using the histogram of the image and the threshold level obtained by trial and error. This conversion made separating the healthy area from the defective area easy. Source: Yashar Shahedi et al., 2024.


Research conducted at the Department of Food Science and Engineering of Zanjan University (Iran) employed visual characteristics acquired from RGB images to study alterations in surface defects, estimate physical and chemical properties, and classify the quality of sweet cherries during their storage under different storage protocols.

ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System) models were also employed. The results showed that the ANN and ANFIS models accurately estimated the quality grades of sweet cherries in all four algorithms with over 90% accuracy. With increasing storage time, the surface damage of sweet cherries increased.

However, coating treatment and increasing the concentration of coatings reduced the rates of this damage. The results indicated that the ANFIS and ANN models demonstrated successful predictions of physical and chemical changes occurring in sweet cherries during storage by exploiting image-based colour and texture characteristics, while showing remarkable accuracy in their modelling.

The study demonstrates that physical and chemical changes in sweet cherries can be predicted using CVS, ANFIS and ANN models. The high diagnostic capability of the algorithm allows its industrial use for diagnostic, control and classification processes.

Source: Yashar Shahedi, Mohsen Zandi, Mandana Bimakr, A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry, Heliyon, Volume 10, Issue 20, 2024, e39484, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e39484.
Images: myfruit.it;  Yashar Shahedi et al 2024.

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

International standards and automation: +7.4% for Chilean cherry exports in the 2024/25 season

Markets

27 Aug 2024

Chile is witnessing a steady growth in cherry production. According to the USDA, for the 2024/25 marketing year, Chilean cherry production is expected to reach 500,000 metric tonnes (MT), an increase of 6.8% from the previous year.

Have the Chilean cherries reached their maximum limit?

Production

19 Mar 2025

Chilean consultant Walter Masman emphasises the importance of innovating in the cherry sector by focusing on technology and quality. Plastic covers and early varieties help to remain competitive by overcoming the oversupply in China with high calibre fruit.

In evidenza

The Chilean model and prospects for cherry growth in Peru

Production

12 Dec 2025

In the last decade, Chile turned cherries into a premium export worth over US$ 1.8 billion, driven by ideal climate, advanced technical management and booming Chinese demand. Andean areas of Peru show potential, but would require infrastructure and adapted strategies.

Pre-harvest treatments with chitosan and salicylic acid to improve the quality and storability of sour cherries

Quality

12 Dec 2025

A Ukrainian study shows that a pre-harvest treatment with chitosan and salicylic acid extends sour cherry shelf life up to 30 days, reducing weight loss, defects, and microbial contamination. It enhances fruit storage, quality and marketability post-harvest.

Tag Popolari