Application of plant phospholipids improves cellular resistance against cracking

16 Dec 2024
649

The product integrates into the plasma membranes of plant cells because they have the same composition (vegetable phospholipids). This same characteristic ensures that it does not cover the stomata and does not interfere with the dynamism of the plant's plasma membrane.

The commercial expansion of cherry cultivation is still limited due to the frequent risk of losses in productivity and fruit quality caused by weather problems, such as spring rains that cause cracking.

The damage to the fruit is caused by the destruction of the cherry cells, which spreads like a cascade effect. All cells have a structure called the plasma membrane, which is essentially a phospholipid bilayer.

In plants, there is the cell wall, which helps provide greater mechanical strength to protect the cell. To reduce cellular damage caused by rain, it is essential to use strategies aimed at strengthening and increasing phospholipids in the membranes. This enhances the elastic capacity of plant cells to withstand a greater volume of water without breaking. It is therefore reasonable and predictable that the use of such a strategy would reduce the incidence of cracking.

In this context, the decision was made to evaluate the product Biotens. This product was created in 2001 by the national chemist Mario Reyes Salinas, who studied with Dr. Derek Barton (Nobel Prize in Chemistry, 1969). Biotens, in its composition, corresponds to vegetable phospholipids dissolved in water, free of chemical solvents and calcium.

Biotens and its Characteristics

Biotens is a product that integrates into the plasma membranes of plant cells because it has the same composition (vegetable phospholipids). Biotens, due to this characteristic, does not cover the stomata and does not interfere with the dynamism of the plant's plasma membrane, meaning the cell maintains absolute control over what enters and exits it.

  • Increases the elastic capacity of plant cells (fruit) against volume increases caused by rain.
  • Protects fruits from damage caused by rain.
  • The absence of alcohols and carboxylic acids in its composition prevents the lipid peroxidation process that generates microfractures in the plant's plasma membrane. When this phenomenon occurs, it is observed as a crack during packaging and/or at the destination.
  • Facilitates the transport of nutrients and/or molecules of interest into the cell, increasing their bioavailability and effectiveness.
  • Improves the coverage and distribution of applied products, optimizing water usage.

Biotens is a tool free of calcium. This mineral is part of the plasma membrane and the cell wall, providing greater resistance to intercellular bonds and increasing tissue rigidity. If we apply a product for cracking that contains phospholipids and calcium in its composition, we will achieve a low incidence of cracking but at the cost of sacrificing the size of our cherries. Phospholipids and their interactions, if not adequately understood, are often a double-edged sword.

Dr. Richard Bastías (UdeC 2015) conducted a field study that involved electron microscopy analysis of the surface of fruits treated and untreated with Biotens to determine the presence of microfractures in the cuticle. For this purpose, tissue samples were taken from the peduncle, lateral, and distal areas of the fruits of each treatment.

Visual aspect of the microfractures in the cuticle of fruits treated with Biotens (a and b) and untreated (c and d). The upper images correspond to the distal area of the fruit, while the lower ones correspond to the peduncle area. Fruits treated with Biotens show the formation of a film that provides greater integrity to the cuticle (photos 4a and 4b).

Image 1.

The image 2 shows that both the length and width of the cuticle microfractures were reduced with the application of Biotens, with differences observed in the distal, peduncular, and lateral areas of the fruit.

In conclusion, the application of Biotens to cherries, under field conditions, effectively reduces the susceptibility of fruits to cracking damage.

Source: Redagrícola
Image: Redagrícola


Cherry Times - All rights reserved

What to read next

Washington State University's breeding program: interview with Per McCord

Breeding Varieties

07 Nov 2023

Major targets for new varieties include large fruit size, firmness, early ripening, self-fertility, and disease resistance. Crosses are made in the orchard and increasingly in the hoop house which extends the crossing season and provides frost protection.

Federal aid for Washington cherry growers: state of disaster declared

Production

28 Mar 2024

The aid is coming after the USDA granted a request for a federal disaster declaration. The decision means that farmers in 22 Washington counties and six Oregon counties are eligible for emergency loans of up to $500,000 each.

In evidenza

Biocontrol of brown rot on cherry and plum: e5icacy, limitations and prospects

Crop protection

25 Jul 2025

A recent study tested the effectiveness of biopesticides and native microbial strains against brown rot caused by Monilinia laxa on cherry and plum. Promising results in pre-harvest phase, but limitations emerged during post-harvest at room temperature.

Oregon’s sweet cherry season turns bitter: “A manmade disaster”

Markets

25 Jul 2025

2025 is a disastrous year for Oregon’s sweet cherries: top-quality harvests remain unsold, labor shortages tied to immigration fears, and a market paying less than production costs. Small family farms face an uncertain future amid ongoing economic strain.

Tag Popolari