Copper and soils: organic matter as an ally for soil health

07 Jan 2025
611

Copper, widely used as a fungicide and bactericide in agriculture, exhibits a dual nature: on one hand, it is an essential element for plant protection; on the other, it poses a threat to soil health.

A recent study conducted in cherry orchard soils in New Zealand analyzed in detail the effects of increasing copper concentrations (7-263 mg/kg) on three key biological indicators: earthworm behavior, soil respiration, and root growth. The main goal of the study was to determine whether soil organic matter (SOM) could mitigate the toxic effects of copper.

The results demonstrated that while SOM effectively reduces the bioavailability and toxicity of copper, its buffering capacity is limited and unsustainable over the long term.

Copper accumulation in soils occurs primarily through leaching by rainfall, the fall of plant debris, and dispersion via spray drift, causing a range of negative effects on soil health. These include reduced microbial respiration, compromised root development, and adverse impacts on earthworm behavior. However, soils with higher organic matter levels showed greater resistance to the toxic effects of copper, highlighting the crucial role of organic matter in safeguarding soil health.

Image 1: Methodology outline using four soils (S1-S4) amended using copper (Cu) and organic matter (SOM).

Behavioral tests on earthworms revealed a clear preference for soils with medium copper content (160 mg/kg) and high organic matter (12%). This suggests that soil organic matter can partially mitigate the negative effects of copper, protecting the organisms present in the soil. Similarly, soil respiration remained within normal levels in the presence of SOM at 9-15%, even with additional copper. In contrast, copper concentrations exceeding 200 mg/kg resulted in a significant decline in microbial respiration, demonstrating a threshold for the tolerance of soil biological systems.

Root growth was also influenced by copper concentrations and soil organic matter levels. Plant roots exhibited a clear tendency to avoid soils with high copper levels and to grow toward areas with greater availability of nutrients and organic matter. However, extreme copper concentrations (263 mg/kg) drastically limited root growth, impairing plants' ability to access essential nutrients for development.

The study underscores the need for a balanced and integrated approach to managing copper in agricultural soils. This approach should include practices that increase organic matter levels to mitigate associated risks. However, relying solely on the buffering capacity of SOM cannot be considered a sustainable long-term solution. Continuous copper accumulation, combined with its slow natural dissipation, poses a persistent threat to the ecological sustainability of agricultural production.

Image 2: Earthworm preference test after 14 days of exposure of 15 earthworms simultaneously to four unamended and amended soils in the choice chambers (n = 5). In the SOM-amended and Cu-spiked soils, SOM was adjusted to 12 % (matching S2) and Cu concentrations were adjusted to 263 mg kg−1 (matching S1).

The research also highlights the urgency of developing effective alternatives to copper for controlling agricultural pathogens. Potential solutions include adopting agroecological practices and introducing new biological control agents capable of reducing the negative impact on soil organisms.

Ultimately, a delicate balance is needed between resource use and the protection of soil biodiversity. The integration of innovative and sustainable management strategies is key to a more resilient agricultural future, capable of addressing challenges, like copper contamination, without compromising productivity and environmental health.

Source: Jeon, D., Robinson, B., & Dickinson, N. (2024). Organic matter mitigates biotic impact of copper in fruit orchard soil. Environmental Pollution, 363, 125145. https://doi.org/10.1016/j.envpol.2024.125145.
Images: Jeon et al., 2024

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Fruit fly and high volume: these are Chile's challenges for the 2024-25 campaign

Events

17 Oct 2024

This season has added another hurdle for producers and exporters, specifically the fruit fly. Given its importance for the sector, Frutas de Chile has organized the webinar “Preparing for the 2024-2025 cherry season with phytosanitary challenges.”

How Calcium and Potassium increase resistance to cracking and accelerate ripening

Crop protection

07 Aug 2024

The experiment was carried out in a commercial orchard of sweet cherry cv. 'Regina' in Lagnasco, Piedmont, grafted on 'Gisela 5', covered by rain and hail nets. Foliar applications were carried out on 15 plants with: Stimulant Plus®, Set® and Abundantia®.

In evidenza

Plastic covers for cherries: climate and irrigation benefits in Chile's Maule region

Covers

04 Jun 2025

A study in Chile’s Maule region analyzes the impact of plastic covers on cherry trees: temperature, humidity, solar radiation and water use. The data help growers reduce abiotic stress and improve post-harvest management during warm and dry seasonal conditions.

New Hungarian Mahaleb rootstocks for sweet cherry: performance and yield data

Rootstocks

04 Jun 2025

Explore the agronomic impact of new Hungarian-bred Mahaleb rootstocks for sweet cherry. Trial results on tree vigour, fruit weight, and yield in irrigated and rain-fed conditions. Complete and reliable data from test orchards near Budapest and Győr, Hungary.

Tag Popolari