Root/plant physiology under abiotic stress conditions

08 Aug 2024
2201

1. Problem statement

Abiotic stress conditions, such as drought, frost/cold snap, extreme precipitation and temperatures, and nutrient deficiencies, significantly challenge plant metabolism and growth leading to productivity pressure. These stresses can lead to delayed harvests, reduced crop yields, poor fruit quality, and increased vulnerability to diseases, giving rise to economic losses. Understanding how plants, particularly their root systems, respond to these stresses is crucial for developing resilient agricultural practices.

2. Solution to make plants more resilient

Several strategies can be employed, including:

  1. developing specific crop varieties with improved stress tolerance through traditional cross breeding and modern genetic engineering techniques.
  2. improving soil structure and health through organic amendments, mulching and proper irrigation practices.
  3. the use of bio-enzymes to speed up nutrient cycling, addressing the missing link in modern agriculture, which are considered largely sterile due to synthetic chemical overuse.

3. Role of bio-enzymes in improving plant resilience

The use of nature derived bio-enzymes is not new, dating back to pre-industrialised era. These biomolecules play a crucial role in enhancing plant resilience to abiotic stress through bioconversion of macro and micronutrients in the soil, creating a constant supply of enriched cationic envelop around the root system in the region known as the rhizosphere. The rhizosphere is responsible for symbiosis in C3, C4 and CAM plants. Fungi and bacteria are part of this vibrant eco-system in a continuum.

By speeding up nutrient conversion cycle and metabolic curve, in plant glucose production and glucose exudation through the root system sustained host plants and soil equilibrium, similar to how the human gut comprised a balanced ecosystem of good and bad bacteria necessary to support gut health through regular pro-biotic intake. In green plants, improved plant metabolism manifest as higher plant vigour, during

  1. vegetative.
  2. flowering.
  3. fruiting.
  4. post-harvest.
  5. breaking dormancy in spring.

The key then lies in maintaining healthy equilibrium through regular supply of bio-enzymes, macro and micronutrients in small doses, at regular intervals, in sync with the metabolism of various C3, C4 and Cam plants under commercial cultivation.

Modern agriculture based on heavy synthetic chemical regimes tend to tip this delicate equilibrium in the soil, negatively influencing on the plant’s natural ability to build defence against abiotic stress. Fortunately, the incorporation of bio-enzymes and commensurate bio-fertiliser into any organic and conventional farming systems addresses this GAP in the whole of Agriculture.

4. Application in fruit trees

If we define plant health as a function of primary (growth) and secondary (defence) metabolisms, both sharing a common pool of cellular energy (CE), always in sync with the life cycle of each variety on planet earth, then the presence of abiotic stress will shift the CE budget, from growth kinetic model to one that is focused on defence mechanism.

Beyond the temperature range of 14 to 35 degree Celsius, stomata on underside of leaves will close, preventing photosynthesis in C3 plants. In C4 plants, cellular activity persists until all energy budget is utilised in secondary metabolism, forcing the plant to enter a remission state for protection.

This also explained under extended abiotic stress conditions, productivity is severely compromised in the absence of a constant pool of bio-enzymes, macro and micronutrients, to keep CE budget viable sustaining the life cycle of C3, C4 and CAM plants.

In just 3 months of substrate and foliar applications, the cell walls will thicken substantially (crop specific), manifesting as higher glucose content with visible modification to physiology and chlorophyll density, with everything being equal. This improvement also manifests as improved organoleptic taste and natural fragrance due to abundance of volatiles emitted by plants through secondary metabolism as indicator of overall plant health.

Increasingly, climate change is influencing harvest outcomes for orchards, from the Pacific Rim on extreme precipitation causing substantial harvest delay for berries, to cold snap in Canada that destroyed 70% of cherry harvest, and extreme heat in Italy that challenged cultivation viability, beyond irrigation sufficiency.

Being prepared can be as easy as diving into bio-enzymes that withstood the test of times. Are you already prepared for your next harvest through early planning?

Image: SL Fruit Service

Dr Jeff Lim
iBioStim from the Little Red Dot (Singapore)


Cherry Times - All rights reserved

What to read next

Chilean cherries: focus on early varieties to reach over 130,000 tonnes in 2027

Production

06 May 2024

‘The cherries of the southern hemisphere are us,’ says Claudio Vial, general manager of the cherry exporter Ranco Cherries, who provides information on the increase in Chilean cherry production (+37%), to reach around 130 million tonnes in 2027.

Cherry trees in Trentino-South Tyrol: the E.Mach Foundation releases a research guide on the territory

Tech management

19 Nov 2024

The monograph is the result of collaboration between the Edmund Mach Foundation and the Laimburg Experimentation Centre. The topics covered range from qualitative to agronomic aspects, orienting the information according to the needs and problems encountered in the area.

In evidenza

Foliar applications of calcium and biostimulant based on Ascophyllum nodosum to improve sweet cherry quality

Production

01 Jan 2026

Ultrasound and nanobubble treatments are transforming postharvest cherry management in Chile. Physiological indicators such as pitting, electrolyte leakage and respiration help assess treatment impact and preserve cherry quality for up to 45 days in cold storage.

New physiological indicators for assessing the post-harvest quality of cherries

Quality

01 Jan 2026

The use of ultrasound and nanobubbles in post-harvest cherry storage in Chile opens up new possibilities. Physiological indicators such as pitting, electrolyte levels allow the effectiveness of treatments to be assessed and fruit storage to be improved by up to 45 days.

Tag Popolari