The role of supercooling in sweet cherry flower buds to avoid frost damage

17 Oct 2024
1939

The survival mechanisms of plants at low temperatures are still being studied, particularly the process of "supercooling" in plant tissues. This mechanism allows cells to maintain water in a liquid state even below freezing, preventing ice formation that could damage the tissues. A Canadian study has examined the properties of sweet cherry flower buds to understand how they manage to supercool and survive through the winter.

Experiments were conducted on sweet cherry flower buds using differential thermal analysis (DTA), a technique that monitors the release of heat due to ice melting. Researchers observed the formation of ice within the bud structure, identifying barriers that prevent its spread to sensitive tissues, such as the flower primordia.

The results showed that ice tends to form between the outer scales and along the bud axis, protecting the primordia from freezing. However, the ability to supercool does not depend on the presence of the scales, which can be removed without compromising the process.

Vascular differentiation (i.e. the development of xylem vessels) in the flower primordia, observed primarily in spring, appears to compromise the buds' supercooling ability. In winter, a barrier located beneath the primordia prevents ice propagation, but as growth resumes in spring, the differentiation of the xylem creates a conduit that facilitates the spread of ice, reducing the effectiveness of supercooling.

Image 1: Ice accommodation in overwintering sweet cherry flower buds exposed to in-field sub-zero temperatures. Photographs taken under a dissecting microscope on 24 February 2023 of a sweet cherry flower bud that was: (a) held at in-field freezing temperatures after experiencing a natural cold snap along with a digital diagram of the same flower bud to highlight regions of ice accommodation, then (b) thawed to room temperature. Source: E. Houghton.

The study also highlighted that the structure of sweet cherry buds is more complex than that of other species in the Prunus genus, such as peach, with a greater number of primordia and scales. Nevertheless, the findings confirm that the supercooling mechanism observed in cherries is similar to that of other Prunus species, like peach and apricot. Ice forms in regions external to the primordia, such as the scales and the bud axis, and this freezing process seems to be a survival strategy at low temperatures.

Finally, it was observed that if the area directly beneath the primordia is damaged, the supercooling mechanism is compromised. This suggests that this region plays a crucial role in maintaining the ability to supercool, as it affects the distribution of water and ice formation in the surrounding tissues.

In summary, this study provides new and detailed insights into the supercooling mechanisms of sweet cherry flower buds, confirming the importance of this system in protecting the flower primordia from frost. This property becomes less efficient with vascular differentiation in the spring. The results of this research contribute to a better understanding of plant survival strategies at low temperatures, with potential applications for improving frost-sensitive species.

Source: Houghton, E., Watanabe, Y., Neilsen, D., Nelson, L. M., & Hannam, K. Investigating properties of sweet cherry (Prunus avium) flower buds that help promote freezing avoidance by supercooling. Plant Biology. https://doi.org/10.1111/plb.13697.
Image: New England Tree Fruit

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Stress management in post-harvest: how to overcome the negative effects of heat waves on cherry trees

Tech management

04 Mar 2025

The summer in the central part of Chile, characterised by high temperatures and intense radiation, can generate stress in the plants and affect good flowering and budding in spring.

Post-harvest physiology and technology of sweet cherry

Post-harvest​

01 May 2023

The market recognises a number of key quality characteristics: a brightly coloured fruit, a strong 'cherry' flavour, a green and turgid stalk. Several new technologies have been developed to prolong the fruit's shelf life.

In evidenza

Smarter Irrigation for Cherries: Managing Water for Fruit Size, Quality, and Profitability

Tech management

09 Jan 2026

Smart irrigation improves cherry fruit size and profitability. With SWAN Systems, growers in Australia, North America and the Mediterranean can optimize water use, reduce waste and cracking, and boost yield through integrated data, expert guidance and better decisions.

New postharvest standard for cherries: anticipation and quality behind Chile’s leadership

Post-harvest​

09 Jan 2026

Rising volumes and logistical pressure make postharvest management the key driver of Chilean cherry profitability. Anticipation, DPV control, humidification, hydrocooling and contingency planning define a new operational standard to protect fruit quality, size and value.

Tag Popolari