Using Machine Learning to differentiate sweet cherry cultivars by endocarp characteristics

09 Jul 2024
1683

The identification of different sweet cherry cultivars has made a significant leap forward with the application of Machine Learning (ML). This technological advancement is described in a 2020 Polish study. The study focused on the endocarp (pit) of sweet cherry, and the results achieved can bring substantial benefits to industries requiring precise cultivar identification, since traditional methods can be time consuming and subjective.

The aim was to assess the textural and geometric properties of sweet cherry endocarp, studying it through image analysis, to distinguish cultivars with remarkable accuracy.

The study concentrated on the sweet cherry cultivarsKordia,” “Lapins,” and “Büttner’s Red”. The pits of each cultivar were meticulously scanned and analyzed. By converting the images into various “color channels” and examining their textures and geometric characteristics, the study developed discriminative models capable of identifying the cultivar from the pits with high precision.

These models were tested in different color spaces: RGB, Lab, and XYZ, and in individual color channels such as G, L, and Y. The accuracy of these models reached 100% in distinguishing “Kordia” from “Lapins” and “Kordia” from “Büttner’s Red.” Even the more complex comparison between “Lapins” and “Büttner’s Red” achieved high accuracy, up to 96%.

This level of precision is significant for industries where the chemical composition of cherry pits can influence the quality of the final product. For example, the oil contained in cherry pits, rich in unsaturated fatty acids, change in its composition among different cultivars. This variation is crucial for applications in food, cosmetic, and biofuel sectors. Misidentifying the pits could lead to mixing materials with different chemical properties, potentially compromising the quality of the final product.

Image 1.

The study’s approach combines image processing techniques with machine learning (ML) algorithms to analyze the endocarp. Image processing leads to the extraction of texture and geometric data. These parameters are then used to build ML models that can classify the pits based on the cultivar. Using image analysis for this purpose not only enhances accuracy but also offers a repeatable and scalable solution at a relatively low cost.

The findings of this research can be extended to other fruits. The methodology developed can be applied to other species where objectivity and rapid cultivar identification are necessary. This technology provides an interesting alternative to manual classification, reducing the

probability of human errors and the associated labor and time costs. As the agricultural sector continues to shift towards digital technologies, integrating ML for cultivar discrimination could become standard practice, improving efficiency and ensuring high quality agricultural products.

In conclusion, the developed models can be used in practice for identifying sweet cherry cultivars based on the endocarp, economically, quickly, and objectively. The success of this study highlights the potential of machine learning in agriculture and paves the way for further innovations in the field.

Source: Ropelewska E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture. 2021; 11(1):6. https://doi.org/10.3390/agriculture11010006.
Image: Ropelewska, 2024

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Chilean cherry industry faces challenges and revival: quality and innovation in focus

Events

06 Oct 2025

Issue 155 of Redagrícola explores the future of Chilean cherries with expert interviews, crop management strategies, postharvest techniques, and a strong focus on quality—key factors to stay competitive in global markets and face the upcoming challenges of the industry.

Sterile insect technique in France: alternative to pesticides for sustainable farming

Crop protection

07 May 2025

Discover how the sterile insect technique is revolutionizing agriculture in France. An innovative alternative to pesticides that reduces environmental impact, protects crops, and involves farmers, citizens, and institutions for a sustainable and safe future.

In evidenza

Smarter Irrigation for Cherries: Managing Water for Fruit Size, Quality, and Profitability

Tech management

09 Jan 2026

Smart irrigation improves cherry fruit size and profitability. With SWAN Systems, growers in Australia, North America and the Mediterranean can optimize water use, reduce waste and cracking, and boost yield through integrated data, expert guidance and better decisions.

New postharvest standard for cherries: anticipation and quality behind Chile’s leadership

Post-harvest​

09 Jan 2026

Rising volumes and logistical pressure make postharvest management the key driver of Chilean cherry profitability. Anticipation, DPV control, humidification, hydrocooling and contingency planning define a new operational standard to protect fruit quality, size and value.

Tag Popolari