L’utilizzo del Machine Learning per differenziare le cultivar di ciliegio dall'endocarpo

09 lug 2024
770

L’individuazione di cultivar diverse di ciliegio ha fatto un significativo passo avanti con l'applicazione del machine learning (ML). Questo progresso tecnologico viene descritto in uno studio polacco del 2020. Lo studio era incentrato sull'endocarpo (nòcciolo) delle ciliegie, ed i risultati raggiunti possono portare a benefici rilevanti per le industrie che richiedono una precisa identificazione delle cultivar, in quanto i metodi tradizionali possono essere lunghi e soggettivi.

L’obiettivo era sfruttare le proprietà di texture e geometriche dei nòccioli delle ciliegie, studiandoli attraverso l'analisi delle immagini, per distinguere le cultivar con notevole precisione.

Lo studio si è concentrato sulle cultivar di ciliegio “Kordia”, “Lapins” e “Büttner’s Red”. I nòccioli di ogni cultivar sono stati accuratamente scansionati ed analizzati. Convertendo le immagini in vari “canali di colore” ed esaminando le loro texture e caratteristiche geometriche, lo studio ha sviluppato modelli discriminativi capaci di identificare le cultivar dai nòccioli con alta precisione.

Questi modelli sono stati testati in diversi spazi di colore: RGB, Lab e XYZ, e in singoli canali di colore come G, L e Y. L'accuratezza di questi modelli ha raggiunto il 100% nel distinguere “Kordia” da “Lapins” e “Kordia” da “Büttner’s Red”. Anche il confronto più complesso tra “Lapins” e “Büttner’s Red” ha ottenuto un'alta accuratezza, fino al 96%.

Questo livello di precisione è significativo per le industrie, dove la composizione chimica dell’endocarpo di ciliegia può influenzare la qualità del prodotto finale. Ad esempio, l'olio contenuto nel nòcciolo di ciliegia, ricco di acidi grassi insaturi, varia nella sua composizione tra le diverse cultivar.

Immagine 1.

Questa variazione è cruciale per applicazioni nel settore alimentare, cosmetico e dei biocarburanti. Identificare erroneamente i noccioli potrebbe portare a miscelare materiali con diverse proprietà chimiche, compromettendo, potenzialmente, la qualità del prodotto finale.

L'approccio dello studio combina tecniche di elaborazione delle immagini con algoritmi di machine learning (ML) per analizzare gli endocarpi. L'elaborazione delle immagini porta all’estrazione dei dati di texture e geometrici. Questi parametri vengono poi utilizzati per costruire modelli di ML che possono classificare i nòccioli in base alla cultivar.

L'uso dell'analisi delle immagini per questo scopo non solo migliora l'accuratezza, ma offre anche una soluzione ripetibile e scalabile a un costo relativamente basso.

I risultati di questa ricerca si possono estendere anche ad altri frutti. La metodologia sviluppata può essere applicata ad altre specie dove è necessaria una identificazione oggettiva e veloce della cultivar. Questa tecnologia offre un’interessante alternativa alla classificazione manuale, riducendo la probabilità di errori umani ed i relativi costi di lavoro e tempo.

Mentre il settore agricolo continua ad abbracciare le tecnologie digitali, l'integrazione del ML per la discriminazione delle cultivar potrebbe diventare una pratica standard, migliorando l'efficienza e garantendo l'alta qualità dei prodotti agricoli.

In conclusione, i modelli sviluppati possono essere utilizzati nella pratica per l'identificazione della cultivar di ciliegio a partire dall'endocarpo, in modo economico, rapido e oggettivo. Il successo di questo studio sottolinea il potenziale del machine learning in agricoltura e aprire la strada ad ulteriori innovazioni nel campo.

Fonte: Ropelewska E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture. 2021; 11(1):6. https://doi.org/10.3390/agriculture11010006.
Immagine: Ropelewska, 2024

Andrea Giovannini
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Una ricerca cilena valuta gli effetti dei biostimolanti sulle varietà Santina

Qualità

27 mag 2024

La ricerca ha valutato l'effetto del prodotto Botan Foliar sulla produzione e qualità della frutta in ciliegi varietà Santina innestati su portainnesto Colt. Le applicazioni dei prodotti e le valutazioni sono state effettuate durante la primavera della stagione 2023-24.

Varietà, export e produzione: il focus turco nel report dell'USDA

Produzione

12 set 2024

La produzione della Turchia per la campagna 2024/25 è prevista in calo rispetto al record dello scorso anno, ma è ancora la terza più grande in assoluto. Nonostante la contrazione della produzione, si prevede che le esportazioni di ciliegie raggiungano il massimo storico,

In evidenza

Ceraseto super-intensivo in Moldavia: un’analisi di resa e qualità su cinque cultivar

Produzione

23 mag 2025

Uno studio in Moldavia analizza cinque varietà di ciliegio dolce in impianti super-intensivi. “Summit”, “Sweet Saretta” e “Sweet Stephany” offrono la resa e qualità migliori, ideali per il mercato europeo. Scopri i dati su produttività, qualità e vantaggi agronomici.

Gelo record sulle ciliegie turche: crollano i raccolti, boom dei prezzi

Mercati

23 mag 2025

Le gelate eccezionali di aprile 2025 hanno colpito duramente la produzione di ciliegie dolci e amarene in Turchia e in Europa orientale. Perdite fino al 90%, prezzi in forte rialzo e offerta limitata. Il 2025 sarà un anno critico per produttori, trasformatori e consumatori.

Tag Popolari