L’utilizzo del Machine Learning per differenziare le cultivar di ciliegio dall'endocarpo

09 lug 2024
376

L’individuazione di cultivar diverse di ciliegio ha fatto un significativo passo avanti con l'applicazione del machine learning (ML). Questo progresso tecnologico viene descritto in uno studio polacco del 2020. Lo studio era incentrato sull'endocarpo (nòcciolo) delle ciliegie, ed i risultati raggiunti possono portare a benefici rilevanti per le industrie che richiedono una precisa identificazione delle cultivar, in quanto i metodi tradizionali possono essere lunghi e soggettivi.

L’obiettivo era sfruttare le proprietà di texture e geometriche dei nòccioli delle ciliegie, studiandoli attraverso l'analisi delle immagini, per distinguere le cultivar con notevole precisione.

Lo studio si è concentrato sulle cultivar di ciliegio “Kordia”, “Lapins” e “Büttner’s Red”. I nòccioli di ogni cultivar sono stati accuratamente scansionati ed analizzati. Convertendo le immagini in vari “canali di colore” ed esaminando le loro texture e caratteristiche geometriche, lo studio ha sviluppato modelli discriminativi capaci di identificare le cultivar dai nòccioli con alta precisione.

Questi modelli sono stati testati in diversi spazi di colore: RGB, Lab e XYZ, e in singoli canali di colore come G, L e Y. L'accuratezza di questi modelli ha raggiunto il 100% nel distinguere “Kordia” da “Lapins” e “Kordia” da “Büttner’s Red”. Anche il confronto più complesso tra “Lapins” e “Büttner’s Red” ha ottenuto un'alta accuratezza, fino al 96%.

Questo livello di precisione è significativo per le industrie, dove la composizione chimica dell’endocarpo di ciliegia può influenzare la qualità del prodotto finale. Ad esempio, l'olio contenuto nel nòcciolo di ciliegia, ricco di acidi grassi insaturi, varia nella sua composizione tra le diverse cultivar.

Immagine 1.

Questa variazione è cruciale per applicazioni nel settore alimentare, cosmetico e dei biocarburanti. Identificare erroneamente i noccioli potrebbe portare a miscelare materiali con diverse proprietà chimiche, compromettendo, potenzialmente, la qualità del prodotto finale.

L'approccio dello studio combina tecniche di elaborazione delle immagini con algoritmi di machine learning (ML) per analizzare gli endocarpi. L'elaborazione delle immagini porta all’estrazione dei dati di texture e geometrici. Questi parametri vengono poi utilizzati per costruire modelli di ML che possono classificare i nòccioli in base alla cultivar.

L'uso dell'analisi delle immagini per questo scopo non solo migliora l'accuratezza, ma offre anche una soluzione ripetibile e scalabile a un costo relativamente basso.

I risultati di questa ricerca si possono estendere anche ad altri frutti. La metodologia sviluppata può essere applicata ad altre specie dove è necessaria una identificazione oggettiva e veloce della cultivar. Questa tecnologia offre un’interessante alternativa alla classificazione manuale, riducendo la probabilità di errori umani ed i relativi costi di lavoro e tempo.

Mentre il settore agricolo continua ad abbracciare le tecnologie digitali, l'integrazione del ML per la discriminazione delle cultivar potrebbe diventare una pratica standard, migliorando l'efficienza e garantendo l'alta qualità dei prodotti agricoli.

In conclusione, i modelli sviluppati possono essere utilizzati nella pratica per l'identificazione della cultivar di ciliegio a partire dall'endocarpo, in modo economico, rapido e oggettivo. Il successo di questo studio sottolinea il potenziale del machine learning in agricoltura e aprire la strada ad ulteriori innovazioni nel campo.

Fonte: Ropelewska E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture. 2021; 11(1):6. https://doi.org/10.3390/agriculture11010006.
Immagine: Ropelewska, 2024

Andrea Giovannini
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Potatura corta o potatura lunga? Il segreto è conoscere l’habitus produttivo

Gestione

19 mar 2024

In Ucraina è stato condotto uno studio che ha avuto l’obiettivo di determinare l'impatto di diverse tecniche e condizioni di potatura su giovani piante di ciliegio. Le varietà impiegate sono state “Krupnoplidna” e “Melitopolska Chorna”, entrambe innestate sul portainnesto Colt.

Le ciliegie della Tasmania si presentano all'Asia Fruit Logistica

Produzione

13 set 2024

“Sappiamo che nuovi mercati aiuteranno l'industria a crescere - dice Jane Howlett, Ministro delle Industrie Primarie - è per questo che il nostro 2030 Strong Plan per il futuro della Tasmania impegna 600.000 dollari a Fruit Growers Tasmania per espandere la presenza commerciale"

In evidenza

L'importanza del portinnesto e della fertilizzazione nella qualità delle ciliegie “Summit”

Gestione

21 nov 2024

Uno studio cinese ha analizzato l’effetto di cinque portinnesti sulla cv. Summit durante la fase di invaiatura del frutto, con o senza fertilizzanti a base di nutrienti privi di azoto. I portinnesti utilizzati sono stati: Mahaleb, Gisela 5 e tre selezioni H11, H17, H22.

Colore e maturazione delle ciliegie: fattori decisivi per la qualità dell'export

Qualità

21 nov 2024

Data la sua influenza diretta su altri indici come il sapore e la compattezza, in questa occasione analizzeremo il colore, dal punto di vista dell'omogeneizzazione nel prodotto finito, dell'alta percentuale di frutta chiara e dell'alta percentuale di frutta scura.

Tag Popolari