Modello ibrido per la fioritura del ciliegio: risultati da Giappone, Corea e Svizzera

12 ago 2025
1292

Negli ultimi decenni, modellizzare la fenologia delle piante arboree, in particolare per quanto riguarda dormienza e fioritura, è diventato uno strumento fondamentale anche per comprendere gli effetti dei cambiamenti climatici.

Tuttavia, i modelli bioclimatici tradizionali utilizzati per prevedere questi eventi mostrano divergenze strutturali significative che ne limitano l'affidabilità e richiedono continue ricalibrazioni specifiche per ogni sito.

Allo stesso tempo, i metodi basati sull’apprendimento automatico (machine learning) offrono soluzioni data-driven potenti ma spesso opache, prive cioè di quella trasparenza interpretativa che caratterizza i modelli basati sulla conoscenza della biologia.

Un approccio ibrido

Per superare queste limitazioni, alcuni ricercatori hanno sviluppato e proposto un modello fenologico ibrido che integra conoscenze biologiche e apprendimento automatico per prevedere la fioritura del ciliegio.

I ricercatori hanno testato il modello su tre casi studio, situati in tre Paesi: Giappone, Corea del Sud e Svizzera, raggiungendo risultati migliori di quelli ottenuti con modelli meccanicistici tradizionali e con reti neurali.

Il modello ibrido proposto si basa su una struttura process-based, ma sostituisce la componente responsabile dell’accumulo di freddo, essenziale per il superamento della endodormienza, con una rete neurale multilivello (MLP), lasciando invece invariato il modulo di forzatura termica.

Caratteristiche tecniche

Questa soluzione consente di apprendere direttamente dai dati la risposta della pianta alle temperature invernali, mantenendo allo stesso tempo coerenza con la struttura biologica del processo.

I dati che sono stati utilizzati provenivano da una vasta serie di osservazioni di date di fioritura, abbinate a dati orari di temperatura (MERRA-2), per un totale di oltre 9.000 osservazioni.

Le prestazioni del modello sono state comparate con tre modelli bioclimatici tradizionali (Chill Hours, Utah Chill, Chill Days), nonché con due reti neurali standard (CNN e LSTM).

Risultati e vantaggi

I risultati, espressi in termini di errore assoluto medio (MAE), mostrano che il modello ibrido ottiene prestazioni superiori in tutte le condizioni sperimentali, con valori di errore inferiori anche del 30-40% rispetto ai modelli convenzionali.

Inoltre, si è dimostrato particolarmente robusto con dati scarsi (come in Corea del Sud), mantenendo capacità predittive elevate anche in assenza di ricalibrazione specifica per sito.

Un altro punto di forza è la capacità del modello di generalizzare a varietà arboree non osservate, fornendo previsioni affidabili anche in condizioni climatiche non incluse nel set di addestramento.

Criticità e sviluppi futuri

Nonostante l’efficacia predittiva, l’analisi delle funzioni apprese dalla rete neurale ha rivelato alcune discrepanze con le curve di risposta attese (derivanti dalle conoscenze biologiche).

Ad esempio, la risposta al freddo appresa dal modello mostra contributi alla fenologia anche a temperature superiori a 12,5 °C, soglia oltre la quale i modelli classici non prevedono alcun effetto.

Questo suggerisce che, sebbene il modello sia vincolato da una struttura bioclimatica, la funzione appresa non sempre riflette fedelmente i meccanismi biologici sottostanti.

Conclusioni

Inoltre, sono state osservate variazioni nella funzione di risposta tra diversi avvii del modello (seed), indice che il sistema è sensibile alla variabilità dei dati di input.

In futuro, un possibile sviluppo del modello potrebbe introdurre penalizzazioni (regularization) per guidare l’apprendimento verso soluzioni bioclimaticamente plausibili, migliorando così sia l’accuratezza predittiva che l’a;idabilità scientifica del modello.

In conclusione, lo studio presenta un approccio ibrido alla modellizzazione della fenologia che coniuga interpretabilità e flessibilità. Applicato alla fioritura del ciliegio, il modello ha dimostrato un’elevata capacità di generalizzazione, adattabilità varietale e precisione predittiva.

Fonte: van Bree, R., Marcos, D., & Athanasiadis, I. N. (2025). Hybrid phenology modeling for predicting temperature e;ects on tree dormancy. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 27, pp. 28458-28466). https://doi.org/10.48550/arXiv.2501.16848 

Fonte immagine: SL Fruit Service

Andrea Giovannini
Università di Bologna


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Alle spalle i problemi di gelate, il Michigan si aspetta una resa storica delle ciliegie per la stagione 2024

Produzione

09 lug 2024

"In Michigan, in particolare, i produttori hanno davanti a sé il più grande raccolto dal 2018 - dice Lance Honing, USDA - Il numero totale nazionale, 355.000 tonnellate, tecnicamente si potrebbe dire che è aumentato del 30% della percentuale rispetto allo scorso anno"

Come evitare ciliegie molli sotto copertura: la strategia dei macrotunnel tra Spagna e Cile

Coperture

06 giu 2025

La produzione di ciliegie precoci sotto copertura è in crescita in Cile e Spagna, ma la qualità del frutto dipende dalla gestione di luce, umidità e calore. L’esperto Javier De Pablo spiega i limiti delle coperture antipioggia e i vantaggi dei macrotunnel automatizzati.

In evidenza

Applicazioni fogliari di calcio e biostimolanti a base di Ascophyllum nodosum per migliorare la qualità delle ciliegie

Produzione

01 gen 2026

Uno studio biennale condotto in Portogallo sul ciliegio “Sweetheart” dimostra come l’uso combinato di calcio e Ascophyllum nodosum migliori qualità, colore, consistenza e conservabilità del frutto, aumentando la resilienza della cerasicoltura alle sfide climatiche.

Nuovi indicatori fisiologici per valutare la qualità post-raccolta delle ciliegie

Qualità

01 gen 2026

L’uso di ultrasuoni e nanobolle nella post-raccolta delle ciliegie in Cile apre nuove prospettive. Indicatori fisiologici come pitting, tasso di elettroliti e respirazione permettono di valutare l’efficacia dei trattamenti e migliorare la conservazione dei frutti fino a 45 giorni

Tag Popolari