Modello ibrido per la fioritura del ciliegio: risultati da Giappone, Corea e Svizzera

12 ago 2025
928

Negli ultimi decenni, modellizzare la fenologia delle piante arboree, in particolare per quanto riguarda dormienza e fioritura, è diventato uno strumento fondamentale anche per comprendere gli effetti dei cambiamenti climatici.

Tuttavia, i modelli bioclimatici tradizionali utilizzati per prevedere questi eventi mostrano divergenze strutturali significative che ne limitano l'affidabilità e richiedono continue ricalibrazioni specifiche per ogni sito.

Allo stesso tempo, i metodi basati sull’apprendimento automatico (machine learning) offrono soluzioni data-driven potenti ma spesso opache, prive cioè di quella trasparenza interpretativa che caratterizza i modelli basati sulla conoscenza della biologia.

Un approccio ibrido

Per superare queste limitazioni, alcuni ricercatori hanno sviluppato e proposto un modello fenologico ibrido che integra conoscenze biologiche e apprendimento automatico per prevedere la fioritura del ciliegio.

I ricercatori hanno testato il modello su tre casi studio, situati in tre Paesi: Giappone, Corea del Sud e Svizzera, raggiungendo risultati migliori di quelli ottenuti con modelli meccanicistici tradizionali e con reti neurali.

Il modello ibrido proposto si basa su una struttura process-based, ma sostituisce la componente responsabile dell’accumulo di freddo, essenziale per il superamento della endodormienza, con una rete neurale multilivello (MLP), lasciando invece invariato il modulo di forzatura termica.

Caratteristiche tecniche

Questa soluzione consente di apprendere direttamente dai dati la risposta della pianta alle temperature invernali, mantenendo allo stesso tempo coerenza con la struttura biologica del processo.

I dati che sono stati utilizzati provenivano da una vasta serie di osservazioni di date di fioritura, abbinate a dati orari di temperatura (MERRA-2), per un totale di oltre 9.000 osservazioni.

Le prestazioni del modello sono state comparate con tre modelli bioclimatici tradizionali (Chill Hours, Utah Chill, Chill Days), nonché con due reti neurali standard (CNN e LSTM).

Risultati e vantaggi

I risultati, espressi in termini di errore assoluto medio (MAE), mostrano che il modello ibrido ottiene prestazioni superiori in tutte le condizioni sperimentali, con valori di errore inferiori anche del 30-40% rispetto ai modelli convenzionali.

Inoltre, si è dimostrato particolarmente robusto con dati scarsi (come in Corea del Sud), mantenendo capacità predittive elevate anche in assenza di ricalibrazione specifica per sito.

Un altro punto di forza è la capacità del modello di generalizzare a varietà arboree non osservate, fornendo previsioni affidabili anche in condizioni climatiche non incluse nel set di addestramento.

Criticità e sviluppi futuri

Nonostante l’efficacia predittiva, l’analisi delle funzioni apprese dalla rete neurale ha rivelato alcune discrepanze con le curve di risposta attese (derivanti dalle conoscenze biologiche).

Ad esempio, la risposta al freddo appresa dal modello mostra contributi alla fenologia anche a temperature superiori a 12,5 °C, soglia oltre la quale i modelli classici non prevedono alcun effetto.

Questo suggerisce che, sebbene il modello sia vincolato da una struttura bioclimatica, la funzione appresa non sempre riflette fedelmente i meccanismi biologici sottostanti.

Conclusioni

Inoltre, sono state osservate variazioni nella funzione di risposta tra diversi avvii del modello (seed), indice che il sistema è sensibile alla variabilità dei dati di input.

In futuro, un possibile sviluppo del modello potrebbe introdurre penalizzazioni (regularization) per guidare l’apprendimento verso soluzioni bioclimaticamente plausibili, migliorando così sia l’accuratezza predittiva che l’a;idabilità scientifica del modello.

In conclusione, lo studio presenta un approccio ibrido alla modellizzazione della fenologia che coniuga interpretabilità e flessibilità. Applicato alla fioritura del ciliegio, il modello ha dimostrato un’elevata capacità di generalizzazione, adattabilità varietale e precisione predittiva.

Fonte: van Bree, R., Marcos, D., & Athanasiadis, I. N. (2025). Hybrid phenology modeling for predicting temperature e;ects on tree dormancy. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 27, pp. 28458-28466). https://doi.org/10.48550/arXiv.2501.16848 

Fonte immagine: SL Fruit Service

Andrea Giovannini
Università di Bologna


Cherry Times - Tutti i diritti riservati

Potrebbe interessarti anche

Le ciliegie tardive altoatesine arricchiscono la stagione di Sant’Orsola

Mercati

15 lug 2024

Nicola Leonardi, responsabile dell'area commerciale di Sant’Orsola, fornisce una panoramica ottimistica della situazione: “Prevediamo una stagione molto buona sia in termini di quantità che di qualità, con almeno il 70% delle ciliegie di calibro 28 e oltre".

Influenza dei portinnesti clonali sulla crescita e produttività del ciliegio nella regione russa di Volgograd

Portinnesti

06 mar 2025

Uno studio condotto nella regione arida di Volgograd, in Russia, ha analizzato l'influenza di diversi portainnesti clonali sulle varietà di ciliegio Toy, Loznovskaya e Memory of Zhukova e sulle varietà di ciliegio dolce Alexandria, Iput, Epos e Yaroslavna.

In evidenza

Effetti del diradamento dei dardi nei ceraseti Lapins: risultati e implicazioni agronomiche

Produzione

10 ott 2025

Uno studio condotto in Cile sul ciliegio Lapins mostra che il diradamento dei dardi fruttiferi non sempre migliora la qualità dei frutti, ma può influenzare lo sviluppo vegetativo. Analisi approfondita su produttività, area fogliare e condizioni climatiche stagionali.

Dal Cile al mondo: obiettivo 120 milioni di casse di ciliegie di alta qualità

Mercati

10 ott 2025

Il settore cileno punta a 120 milioni di casse di ciliegie di alta qualità. Focus su reputazione, mercati alternativi alla Cina e crescita in Europa e Stati Uniti. Claudia Soler spiega la strategia per migliorare l’esperienza di consumo e rafforzare l’export globale.

Tag Popolari