Assessing root architecture with radar and artificial intelligence

06 Aug 2024
1673

Trees are essential for providing food, raw materials, and oxygen while sequestering carbon dioxide from the atmosphere. Therefore, optimizing tree management is crucial to enhance these benefits.

A study conducted by researchers at the Michigan State University (USA) introduces an innovative approach to analyzing tree root systems using ground-penetrating radar (GPR) combined with artificial intelligence (AI) to reconstruct the three-dimensional (3D) spatial extent and distribution of roots in tart cherry trees. Michigan cultivates 75% of the USA's tart cherries, and this research highlights the economic and health benefits of these trees, including their high antioxidant content.

The study analyzed the tree roots from two mature orchards in Michigan, using an 800 MHz GPR antenna. The resulting images were processed with AI algorithms to extract root patterns, an innovative application in this field.

To validate the capabilities of the 800 MHz GPR in detecting root sizes, a controlled, non-destructive experiment was conducted under similar conditions to those of the tart cherry trees. This validation step is fundamental for the image interpretation process and for accurately reconstructing the root geometry.

Image 1.

The research compared root extent with canopy size using images from unmanned aerial vehicles (UAVs). This showed that the lateral extent of the roots exceeded the canopy size. Additionally, an experiment involving 112 root proxies was conducted to build a predictive model of root weight.

Using machine learning algorithms, the model achieved high accuracy, with a weight percentage error of about 5%. The results demonstrate that a set of non-invasive and integrated methods can efficiently determine root distribution and potentially estimate root weight.

In conclusion, the study successfully integrated GPR and AI to evaluate tree root architecture non-invasively. AI algorithms significantly improved the interpretation of GPR data, leading to accurate 3D reconstructions of root systems. This approach offers a promising tool for optimizing tree management and growth, providing better ecosystem services and improving productivity.

Moreover, understanding the spatial relationship between tree roots and canopies can improve agricultural practices and increase our knowledge of carbon dynamics in trees. The methodologies developed in this study provide a foundation for future research and applications in tree root analysis and management.

Source: Basso, B., Salako, J., Kendall, A., & Millar, N. (2024). Assessing Tree Root Distributions Using Ground Penetrating Radar (Gpr) and Artificial Intelligence. Available at SSRN 4829515. Pre-print, under peer-review. dx.doi.org/10.2139/ssrn.4829515.
Image: Good Fruit Grower

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Difficulties and problems in Spain for the mountain cherry, Asaja Alicante against the regional organisation

Production Varieties

09 Nov 2023

The previous Ministry had been asked for a long-term viability plan to save the cherry harvest and to respond to last year's vulnerable situation, but farmers have not yet received a response from the regional administration.

Application of plant phospholipids improves cellular resistance against cracking

Tech management

16 Dec 2024

Biotens is a product that integrates into the plasma membranes of plant cells because it has the same composition (vegetable phospholipids). Biotens, due to this characteristic, does not cover the stomata and does not interfere with the dynamism of the plant's plasma membran.

In evidenza

A new manual on growing and pruning fruit trees

Planting systems

20 Feb 2026

The Ontario Ministry of Agriculture (Canada) publishes a technical guide on the cultivation and pruning of stone and pome fruit trees. Focus on peach, plum, sweet cherry and pear trees, with guidance on work efficiency, crop load management and disease control.

S.L.E.C.I.: the innovative irrigation system that reduces water consumption while maintaining yield and quality in sweet cherry

Tech management

20 Feb 2026

A Bulgarian study compares the SLECI system with drip irrigation in sweet cherry orchards. Water use reduced up to 14 times with similar yields and higher irrigation water productivity. A sustainable solution for drought-prone areas with limited energy resources.

Tag Popolari