Chinese study investigates link between HIPP proteins and cold tolerance in sweet cherry tree

20 Jun 2024
788

Heavy metals and abiotic stresses such as cold, salt, and drought pose significant challenges to the survival and productivity of plants. Understanding how plants manage these stresses at the molecular level can lead to the development of more resistant crops. A recent study by Guizhou University analyzed the role of a specific protein, PavHIPP16, in sweet cherry (Prunus avium) and its response to cold stress.

Previous research has identified the importance of proteins associated with heavy metals in plants. For example, it has been shown that the HIPP26 protein in Arabidopsis thaliana is involved in responses to cold stress, salt, and drought[2]. HIPP26 interacts with the transcription factor homeodomain zinc finger ATHB29, which is fundamental for the response to dehydration stress.

Additionally, a comprehensive study of metal-chaperone-like proteins in Arabidopsis revealed a broad family of HIPP and HPP, implicated in the detoxification of heavy metals and stress responses.

The new study builds on this foundation and focuses on PavHIPP16 and its role in cold stress tolerance in sweet cherry. Researchers overexpressed PavHIPP16 in tobacco plants to observe its effects under low temperature conditions.

The overexpression (OE) lines showed significantly better growth compared to the wild-type (WT) plants. Key indicators such as the germination rate, root length, and fresh weight were all higher in the OE lines.

Furthermore, the study measured several physiological and biochemical parameters to understand the mechanisms behind this improved cold tolerance. The relative conductivity and malondialdehyde (MDA) content, both indicators of cellular damage, were lower in the OE lines compared to the WT plants.

Conversely, the activities of antioxidant enzymes (peroxidase, superoxide dismutase, and catalase), hydrogen peroxide levels, and the contents of proline, soluble proteins, and soluble sugars were significantly higher in the OE lines. These results suggest that PavHIPP16 enhances cold tolerance by improving the plant's antioxidant defense system and osmotic regulation.

Interestingly, the study also identified an interaction between PavHIPP16 and PavbHLH106, a basic helix-loop-helix (bHLH) transcription factor. This interaction was verified through yeast complementation and luciferase assays. The co-regulation of these proteins appears to be a crucial component of the cold tolerance mechanism in plants.

The results of this study are consistent with previous findings on the role of HIPP in stress responses. For example, HIPP26 in Arabidopsis also interacts with a transcription factor (ATHB29) and is involved in stress responses. Similarly, the role of HIPP in the detoxification of heavy metals and stress response has been highlighted in previous studies.

Read the full article: Natural Science News
Image: MSU


Cherry Times - All rights reserved

What to read next

Cherry growth: the three key stages for achieving exceptional fruit size

Quality

07 Aug 2025

Large-caliber cherries are shaped by three critical growth stages: cell proliferation, pit hardening, and final expansion. Genetics and physiology work together to determine the fruit’s size, sweetness, firmness, and premium quality for the most demanding markets.

Argentina: low volumes compared to last year, but quality ensures exports

Markets

22 Jan 2025

‘This season will not be bad for Argentinian exporters. Prices were maintained thanks to the quality of the cherries. We lacked volume, which unfortunately affected producers in Chubut,' said CAPCI Director General Aníbal Caminiti.

In evidenza

Vertical seed dispersal of cherry trees in Japan: role of climate and wildlife

Tech management

08 Aug 2025

Vertical seed dispersal of cherry trees in Japan is influenced by fruiting phenology, climate change, and the presence of frugivorous megafauna. The study highlights how birds and mammals shape the ability of plants to adapt to new mountain areas.

Cherry trees: using dormancy breakers for uniform budburst

Tech management

08 Aug 2025

Mild winters reduce chill accumulation in cherry trees, leading to uneven bloom and lower fruit quality. Dormancy breakers ensure uniform budburst, advance harvest timing and improve orchard management. Discover correct application rates, timing and precautions.

Tag Popolari