Chinese study investigates link between HIPP proteins and cold tolerance in sweet cherry tree

20 Jun 2024
1375

Heavy metals and abiotic stresses such as cold, salt, and drought pose significant challenges to the survival and productivity of plants. Understanding how plants manage these stresses at the molecular level can lead to the development of more resistant crops. A recent study by Guizhou University analyzed the role of a specific protein, PavHIPP16, in sweet cherry (Prunus avium) and its response to cold stress.

Previous research has identified the importance of proteins associated with heavy metals in plants. For example, it has been shown that the HIPP26 protein in Arabidopsis thaliana is involved in responses to cold stress, salt, and drought[2]. HIPP26 interacts with the transcription factor homeodomain zinc finger ATHB29, which is fundamental for the response to dehydration stress.

Additionally, a comprehensive study of metal-chaperone-like proteins in Arabidopsis revealed a broad family of HIPP and HPP, implicated in the detoxification of heavy metals and stress responses.

The new study builds on this foundation and focuses on PavHIPP16 and its role in cold stress tolerance in sweet cherry. Researchers overexpressed PavHIPP16 in tobacco plants to observe its effects under low temperature conditions.

The overexpression (OE) lines showed significantly better growth compared to the wild-type (WT) plants. Key indicators such as the germination rate, root length, and fresh weight were all higher in the OE lines.

Furthermore, the study measured several physiological and biochemical parameters to understand the mechanisms behind this improved cold tolerance. The relative conductivity and malondialdehyde (MDA) content, both indicators of cellular damage, were lower in the OE lines compared to the WT plants.

Conversely, the activities of antioxidant enzymes (peroxidase, superoxide dismutase, and catalase), hydrogen peroxide levels, and the contents of proline, soluble proteins, and soluble sugars were significantly higher in the OE lines. These results suggest that PavHIPP16 enhances cold tolerance by improving the plant's antioxidant defense system and osmotic regulation.

Interestingly, the study also identified an interaction between PavHIPP16 and PavbHLH106, a basic helix-loop-helix (bHLH) transcription factor. This interaction was verified through yeast complementation and luciferase assays. The co-regulation of these proteins appears to be a crucial component of the cold tolerance mechanism in plants.

The results of this study are consistent with previous findings on the role of HIPP in stress responses. For example, HIPP26 in Arabidopsis also interacts with a transcription factor (ATHB29) and is involved in stress responses. Similarly, the role of HIPP in the detoxification of heavy metals and stress response has been highlighted in previous studies.

Read the full article: Natural Science News
Image: MSU


Cherry Times - All rights reserved

What to read next

Boron stimulates fruit formation and reprograms the development metabolism

Tech management

05 Oct 2023

In Prunus species, it forms complexes with sorbitol and fructose, which allow it to move through the phloem. During the initial growth phase, fruits exposed to boron exhibited a lower presence of heat shock proteins.

Field meeting: ANA Chile presents the Sweet series in the Maule region

Events Press review

28 Dec 2023

On 20 December in the area of Río Claro, in the region of Maule, a trial of the new varieties Sweet Saretta® and Sweet Stephany® was visited with fruits close to harvest, which showed a size of around 30 mm and soluble solids around 20°brix.

In evidenza

RedBeats: the Chilean cherry brand turning fruit into a pop snack

Consumption

09 Dec 2025

Copefrut introduces RedBeats, a Chilean cherry brand tailored for Gen Z: music-driven identity, flexible packaging and smart formats for every moment. The goal is to turn cherries into a daily snack, moving beyond the traditional gifting-centered consumption model.

Cherry coloration: a gene reveals the secrets behind pigment formation

Quality

09 Dec 2025

A scientific study in Sichuan (China) analyzed two cherry varieties with contrasting colors to understand the genetic regulation of anthocyanin production. The PavMYB.C2 gene and cyanidin-3-glucoside play a central role in developing darker hues. Applications for agriculture and

Tag Popolari