Engineering of cherry rootstocks to increase virus resistance

05 Feb 2024
1813

Sweet and sour cherries, as well as other Prunus species, are vulnerable to several potentially harmful viruses, such as Prunus necrotic ringspot virus (PNRSV). This virus can be transmitted through various means, including grafting, pruning, pollen, insects (e.g. aphids and leafhoppers) and underground pests (e.g. nematodes).

Although sweet cherry cultivars generally show minimal or no symptoms of PNRSV infection, some specific virus strains can induce rugose mosaic disease, a condition that negatively affects fruit quality and ripening time as well as general plant health status.

Regarding rootstocks, on the other hand, tolerance, or hypersensitivity to prevalent viruses, including PNRSV, varies. However, if a cherry cultivar is tolerant to a particular PNRSV strain but the rootstock is not, when the virus reaches the grafting point a hypersensitivity reaction will occur, which may lead to vascular necrosis, eventually culminating in the death of the tree.

Traditionally, the selection of virus-resistant cultivars is uncommon as it is expensive and time-consuming due to problems such as heterozygosity, the long juvenile phase of the plants and the absence of natural sources of resistance. Although genetic engineering has the potential to enable the integration of single or multiple genes into established sweet cherry genotypes, the implementation of such strategies has been hampered by concerns about transgene flow and exogenous protein production.

Furthermore, like many perennial woody fruit crops, the genetic transformation of cherries is currently a complex and irregular process. Individually transforming each of the varieties currently on the market would require an enormous amount of time and resources.

One of the most promising approaches to increase plant resistance to viruses is post-transcriptional gene silencing, which employs RNA interference (RNAi) to prevent pathogenicity and virus replication. The research conducted by researchers at Michigan State University (USA) used a specific vector to introduce resistance to PNRSV infection in two hybrid cherry rootstocks, 'Gisela 6' and 'Gisela 7', which were tolerant and susceptible to PNRSV infection, respectively.

One year after receiving PNRSV plus Prune Dwarf Virus as inoculant, the non-transgenic 'Gisela 6' rootstocks showed no symptoms but a considerable PNRSV titre, whereas in transgenic 'Gisela 6' showed no symptoms and a negligible PNRSV titre.

Unlike their transgenic counterparts, non-transgenic trees grafted onto 'Gisela 7' died. The results of this study indicate that the use of RNA interference to develop viral resistance in fruit rootstocks is feasible.

The implementation of RNAi to create transgenic rootstocks could potentially increase the yield of conventional and non-genetically modified fruit varieties while circumventing the challenges associated with transgene flow and exogenous protein synthesis that are inherent to transformed fruit genotypes

The results illustrate the efficacy of RNA interference-mediated gene silencing in promoting viral resistance in cherry rootstocks. The use of resistant transgenic rootstocks offers exceptional resources to study: (i) the production of commercial non-GM fruit cultivars through the use of transgenic rootstocks and (ii) the prevention, reduction or elimination of viral infection in scion cultivars grafted onto the transgenic rootstock.

Source: Song, G.-q., Sink, K.C., Walworth, A.E., Cook, M.A., Allison, R.F. and Lang, G.A. (2013), Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol J, 11: 702-708. https://doi.org/10.1111/pbi.12060.

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

German study reveals how to increase fruit set through synergy between mason bees and honeybees

Tech management

17 Aug 2023

This study examined the relationship between stocking rates and honeybee and mason bee abundance in 17 sweet cherry orchards in central Germany. Also, an experiment was conducted to investigate the influence of mason bees and honeybees on fruit set of sweet cherry trees.

Argentina: record year, more than 5,000 tonnes exported

Production

26 Aug 2024

‘It was a very good year. We had a high quality harvest and this was recognised by the market,' commented Aníbal Caminiti, director of CAPCI. ‘At the national level, we can say that we are about to reach 6,000 tonnes of exported cherries.

In evidenza

Support and protection to guarantee a generous, high-quality harvest

Covers

07 Nov 2025

ValenteProtect© systems provide protection from rain, hail and insects, helping cherry growers secure abundant, healthy and market-ready harvests. Rain, Multishield and Insect Net systems ensure complete seasonal protection for top-quality yields.

Australian cherries: winning strategies across social media, retail and Asian export

Markets

07 Nov 2025

In 2024/25, Hort Innovation drove a full-scale strategy to promote Australian cherries: targeted social campaigns, retail training, and Asian export promotions led to an 11.8% sales boost in stores and a 46% export growth in Vietnam, strengthening the entire supply chain.

Tag Popolari