French research studies the ability of Drosophila suzukii to adapt to different environments

23 Oct 2024
1226

The Drosophila suzukii, a parasitic insect of fruit crops, stands out for its ability to feed on a wide variety of fruits. A recent study conducted by researchers at INRAE reveals that this fly accumulates chemical compounds from fruits without metabolizing them, a tolerance that may allow it to adapt to different environments. The results of this study, published in the journal eLife, could help develop innovative strategies to protect crops from this pest.

Plant-eating insects generally focus on one or a few specific plants. However, some insect species are exceptions and feed on a wide variety of plants. This is the case of Drosophila suzukii, a formidable small fly that attacks many fruit crops, including cherries, grapes, strawberries, and raspberries. Capable of feeding on many fruit varieties, this species is considered a generalist.

A research group, composed of INRAE scientists from the CBGP (Centre de Biologie pour la gestion des populations) and SVQV (Santé de la vigne et qualité du vin) units, sought to understand how these insects manage to digest and utilize such a wide range of chemical compounds present in their different foods.

Image 1: Schematic overview of the experimental design, host-use analyses, and expectations according to the hypotheses of "metabolic generalism" and "multihost metabolic specialism." Source: Olazcuaga et al., 2024.

The scientists compared the chemical composition of different fruits with that of the fruit flies that had consumed them. The results, obtained using an advanced technique known as high-performance chromatography coupled with mass spectrometry, are particularly intriguing.

The fruit flies passively accumulate many specific compounds from the fruits without metabolizing them. This means that D. suzukii is not particularly adapted to each fruit it consumes; instead, it seems to tolerate a diversity of chemical compounds.

This tolerance could give D. suzukii significant flexibility, an important advantage in exploiting different environments. Researchers believe that this ability to utilize a variety of fruits could be crucial for the survival of populations during winter, finding refuge fruits.

The study published in the journal eLife, which combines evolutionary biology and chemical ecology, provides a better understanding of the relationships between plants and insects. It could contribute to the development of new strategies for managing this pest, which is a real scourge for cherry growers, particularly by identifying refuge fruits.

Source: INRAE
Image: Reussir


Cherry Times - All rights reserved

What to read next

Overview of the use of forchlorfenuron (CPPU) to increase fruit yield, quality, and storability

Tech management

22 Jan 2026

Forchlorfenuron (CPPU) is a growth regulator used in fruit farming to improve size, yield and shelf life. It enhances quality and storage by acting on cell growth, sugar levels and metabolism. A sustainable choice for modern and efficient fruit production systems.

How the seasonality of consumption affects the environmental performance of fruit supply chains: the case of cherries in China

Consumption Production

07 Sep 2023

Several conclusions can be drawn: of great importance is the efficiency of orchard management, the impact of which on total emissions is still significant. In the distribution phase, low-impact transport systems, such as those by sea, should undoubtedly be favoured.

In evidenza

Controlled atmosphere extends shelf life of sweet cherries: study from Chilean university

Post-harvest​

05 Feb 2026

A research study from the University of Chile investigates how controlled atmosphere storage improves the shelf life of ‘Bing’ and ‘Lapins’ sweet cherries. Results show significant postharvest quality improvements under cold storage and market simulation conditions.

Using precision farming to detect and prevent cherry fruit cracking

Tech management

05 Feb 2026

With precision farming, it's now possible to prevent fruit cracking by optimizing irrigation, monitoring and data collection. Sensors, drones and AI support European growers in improving yield and fruit quality in cherries, grapes, citrus and pomegranates.

Tag Popolari