From sweet cherry pruning waste to a resource for sustainable biocomposites

30 Jan 2025
736

The growing need for more sustainable and environmentally friendly materials is driving new solutions for agricultural waste utilization. Among these, a recent study explored the possibility of using sweet cherry pruning branches as an eco-friendly alternative to traditional fillers in lightweight composite materials. Every year, large quantities of this "waste" are disposed of through combustion, contributing to carbon dioxide emissions and the loss of potential energy. However, these residues can be repurposed, transforming them into a valuable resource for biocomposite production.

The study involved collecting branches from trees located in mountainous regions of Turkey, at approximately 1,600 meters above sea level. After careful drying and grinding, the branches were processed into wood and bark particles with sizes smaller than 100 micrometers. These materials were then mixed with an epoxy resin matrix in three different weight ratios: 5%, 10%, and 15%.

Chemical analyses highlighted significant differences between wood and bark. Wood contains a higher cellulose content (70.65%) compared to bark (63.85%), while bark is richer in lignin. Both fillers demonstrated thermal stability up to approximately 200°C, making them suitable for polymerization processes.

Morphological studies using scanning electron microscopy (SEM) revealed irregular surfaces with microcracks, a characteristic that could negatively affect adhesion to the matrix, especially at higher filler percentages.

Mechanical tests provided interesting results: the composition with 5% wood particles achieved the best performance, with a tensile strength of 45 MPa, a tensile modulus of 1883 MPa, a flexural strength of 74 MPa, and a flexural modulus of 2559 MPa. Conversely, increasing the filler concentration to 10% and 15% led to a decrease in mechanical properties. This effect is attributed to the formation of agglomerates and uneven particle dispersion, which hinder stress transfer.

Although bark has intrinsic properties that make it inferior to wood, it proved to be a valid reinforcement material, particularly at lower percentages. Composites with 5% bark improved the elastic modulus compared to pure epoxy resin, albeit with lower strength values. Differences between wood and bark are reflected not only in mechanical properties but also in chemical composition: bark contains more minerals and lignin but less cellulose, factors that affect compatibility with the polymer matrix.

This study paves the way for the use of pruning waste as a raw material for new biocomposites. The results highlight wood's potential as a filler for non-structural applications, such as in automotive and marine industries, particularly for the production of interior panels. However, further research is needed to optimize filler processing, improve matrix adhesion, and develop more efficient industrial processes.

In conclusion, the use of lignocellulosic materials derived from agricultural waste, such as pruning residues, offers significant environmental advantages, including the reuse of materials that would otherwise be considered waste. If implemented on a large scale, this solution could contribute to a more circular economy.

Fonte: Öncül, M., Atagür, M., Atan, E., & Sever, K. A preliminary evaluation of bing cherry tree (Prunus avium L.) pruning waste as an alternative lignocellulosic filler for lightweight composite material applications. Polymer Composites. https://doi.org/10.1002/pc.29197.
Immagini: SL Fruit Service

Andrea Giovannini
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

What to read next

Reducing pollution thanks to sour cherry leaves

Health

19 Jan 2024

Adsorption capacities of 524.1 (mg g-1) were obtained for crystal violet and 168.6 (mg g-1) for methylene blue. These capacities significantly exceed those of other comparable adsorbents. The only disadvantage? The inability to regenerate the adsorbent.

From Ri.Nova a ‘green’ shield against insects and hail: cherries smile again with the ‘SMILE’ project

Crop protection

07 Jun 2024

Less chemicals, more protection from rain, hail and insects. The challenge has been taken up by Ri.Nova and Unibo, who, in collaboration with the Vignola Cherry Consortium, have come up with a number of innovative systems for the defence of cherry cultivation.

In evidenza

Little Cherry Disease threatens cherry orchards in Washington State: growers speak out

Crop protection

22 Aug 2025

Little Cherry Disease (LCD) is damaging cherry orchards across Washington State, with growers reporting severe losses. Tree removals and bitter, undersized fruit are symptoms of this threat—comparable to citrus greening (HLB) in Florida’s citrus industry.

Organic fertilizers and compost: sustainable growth in organic orchards in Puglia

Tech management

22 Aug 2025

In Puglia, research on organic orchards highlights how compost and organic fertilizers boost yield, improve soil health, and enhance plant resilience. A sustainable approach that supports Mediterranean organic farming while delivering environmental and agronomic benefits.

Tag Popolari