Effect of multifunctional nets on high-density cherry crops

20 Jun 2023
2465

At the IX International Cherry Symposium in Beijing (22-25 May 2023), there was much discussion on cherry covers and their impact on fruit growth and quality. This article reports a summary of the work presented by Andrea Giovannini together with the Fruit Tree Ecophysiology group of DISTAL - University of Bologna.

World production of cherries (Prunus avium L.) has increased significantly in recent decades in response to growing demand. The world's largest producer country is Turkey, followed by the USA, while Italy has historically been one of the world's largest producers, ranking seventh in 2021 with a production of 93,000 tonnes (FAOSTAT, 2022). Overall, the Asian continent is the largest producer: 45% of world production in 2021 (FAOSTAT, 2022).

Climate change is posing new challenges for cherry growers. The most important problems for growers are Drosophila suzukii (oviposition) and fruit 'cracking' (water on the fruit close to harvest). Both problems can be greatly reduced through the use of multifunctional nets, which protect cherry crops from hail, rain, excessive wind and insects at the same time. These nets modify the microclimatic conditions (light, temperature, humidity, etc.) in which the plant finds itself, as well as its physiological parameters and, consequently, production.

The research presented at the IX Cherry Symposium held in Beijing (China) in early May showed the results of a one-season study carried out on a farm in the province of Ferrara (IT). The cherry orchard, with a very high density (6600 plants/ha), was made up of different cultivars; the one examined was 'Sweet Saretta' on dwarfing rootstock Gisela 5. Three different single-row multifunctional nets by Arrigoni S.p.A. were tested in the orchard: i) PROTECTA®: 22% shading, ii) PROTECTA ULTRA®: 24% shading, iii) PROTECTA GREY®: 40% shading. During the season, plant water relations, leaf gas exchange, fruit and shoot growth as well as temperature and humidity under the various nets were measured. At harvest, the main fruit quality parameters and the total production per plant were evaluated.

The data collected showed higher temperatures and lower relative humidity values under the different nets than outside during the hottest hours of the day, especially in the second half of the season. However, trunk and leaf water potentials did not seem to be influenced by the higher evapotranspirative demand of the atmosphere (higher VPD) under the nets during most of the season.

Subsequently, at post-harvest, when the VPD was further increased, the plants under the nets with higher shading (PROTECTA GREY and ULTRA) showed a less negative trunk water potential, indicating a better water status of the plant, although the photosynthesis values showed no differences between the nets. Qualitative analyses showed that the fruits under the PROTECTA GREY net (high shading, 40%) were slightly smaller, but without any difference in the soluble solids content (°Brix) and acidity of the fruits, nor in the total yields of the trees.

The results obtained, therefore, show that high-density cherry orchards could profit from high levels of shading provided by the nets. The increased shading did not decrease photosynthesis, but positively influenced the water status of the plants post-harvest.

These multifunctional nets can, therefore, protect the cherry orchard from hail, harmful insects and, thanks to their double layer at the top, prevent the fruit from wetting, thus preventing it from splitting. They are therefore currently one of the most effective tools for controlling numerous biotic and abiotic stresses.

In conclusion, the study shows how, in high-density orchards, the adoption of multifunctional nets can have numerous positive effects (combined with the lower number of insecticide treatments required). Further studies are planned to validate the results obtained in the test year, and it is still important to study the behaviour of the covers according to the type, environment and characteristics of the orchard.

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Pollinator flies: a new frontier for sustainable fruit growing

Tech management

15 Dec 2025

With bee health under threat and wild pollinators in decline, an innovative project is turning to flies as alternative pollinators for crops like cherries, avocados and vegetables, offering a practical solution to build a more resilient and sustainable fruit production system.

Meizao cherries: 30 μm LDPE MAP packaging extends shelf life in China

Post-harvest​

08 Oct 2025

A Chinese study shows how 30 μm LDPE (PE30) film extends Meizao cherries' shelf life up to 60 days. It reduces spoilage and preserves nutritional quality, texture and appearance, offering an effective, scalable packaging solution for Chinese producers, retailers and distributors.

In evidenza

Cherries 2025: global production shifts and new export routes

Markets

15 Jan 2026

2025 marks a significant turning point for the global cherry industry: declining Northern Hemisphere yields, booming South American exports, and emerging markets like India and China. Quality, logistics, innovation, and diversification drive competitiveness.

China bets on cherries: from luxury fruit to agricultural strategy

Production

15 Jan 2026

China is investing in cherry production, turning what was once considered a luxury fruit into a key pillar of its agricultural strategy. Backed by strong local government support, provinces like Shandong and Yunnan are scaling up output and reducing import dependency.

Tag Popolari