Microbial antagonists for the biocontrol of post-harvest diseases

09 Apr 2025
1384

Microbial antagonists for the biocontrol

Post-harvest losses of fruits and vegetables are a major global issue and are often caused by rots induced by pathogenic fungi. Traditionally, the defense against these diseases relies on the use of synthetic fungicides, but growing environmental and health concerns are promoting the search for more eco-friendly alternatives.

Among the most promising strategies is the use of antagonistic microbial agents (i.e. microorganisms that counteract the development of pathogenic fungi), in combination with sodium bicarbonate, a low-impact compound already widely used in the food industry.

Figure 1. Factors contributing to the deterioration of plums and cherries before they reach the market. 

A recent study from Spain evaluated the effectiveness of four yeasts (Cryptococcus laurentii, Trichosporon pullulans, Hanseniaspora uvarum, and Pichia guillermondii) and two bacteria (Bacillus subtilis and Pseudomonas syringae) against the main fungi responsible for post-harvest rots in sweet cherries and plums.

Study on cherries and plums

In particular, the study analyzed the cultivars “Sweethearts” (cherry) and “Angeleno” (plum). The treatments were tested both in situ, directly on the fruit, and in vivo, simulating storage and distribution conditions.

Figure 2. Influence of different inoculation concentrations of microbial antagonists (H. uvarum and P. guillermondii), either alone or in combination with sodium bicarbonate, on post-harvest sweet cheery under optimal conditions to induce biotic damage (25 °C and 90–100% HR). Means ± SD presented in each bar followed by the same letters are not significantly different (Tukey’s test, p < 0.05). 

Results showed that the yeasts P. guillermondii and H. uvarum had an effective protective action, especially when combined with sodium bicarbonate, inhibiting the development of pathogens such as Monilinia laxa and Botrytis cinerea, which cause brown rot and gray mold, respectively.

In the in situ tests, the synergistic effect between the antagonists and sodium bicarbonate proved particularly effective. This effect can be attributed to the bicarbonate’s ability to alter osmotic pressure, weakening fungal cell structures and thus enhancing the action of the antagonistic yeasts.

Effects of sodium bicarbonate

Furthermore, the combined use of bicarbonate (at 2%) improved fruit storage, maintaining its organoleptic properties and extending shelf life. However, in in vivo tests, simulating real transport and storage conditions, the efficacy of the combination did not reach the same levels observed in in situ tests, indicating the need for further studies to optimize practical applications of this method.

Figure 3. Influence of different inoculation concentrations of P. guilliermondii antagonist on post-harvest sweet cheery at refrigeration temperature (0 °C). Means ± SD presented in each bar followed by the same letters are not significantly different (Tukey’s test, p < 0.05). 

The concentration of microbial antagonists is an important factor. To ensure effective control of fungal infections, it is essential that the microbial population on the fruit surface is sufficiently dense to suppress pathogen development.

The tests showed that high concentrations of P. guillermondii significantly reduced the rate of cherry decay during marketing, while lower concentrations were less effective. Additionally, the use of preharvest treatments could represent an even more effective strategy to improve post-harvest disease control.

Prospects and limitations

Therefore, the combination of sodium bicarbonate and antagonistic microorganisms appears to be a promising alternative to synthetic fungicides for managing post-harvest diseases in cherries and plums. This strategy offers several advantages, including lower environmental impact, reduced likelihood of pathogen resistance development, and greater consumer acceptance.

However, for large-scale application, further studies are needed to assess the stability and effectiveness of these treatments under real operating conditions, as well as to fully understand the modes of action of the antagonistic microorganisms and the potential impact of antimicrobial metabolites (although generally considered negligible).

Source: Navajas-Preciado, B., Rocha-Pimienta, J., Martillanes, S., Galván, A., Izaguirre-Pérez, N., & Delgado-Adámez, J. (2024). Application of Microbial Antagonists in Combination with Sodium Bicarbonate to Control Post-Harvest Diseases of Sweet Cherry (Prunus avium L.) and Plums (Prunus salicina Lindl.). Applied Sciences, 14(23), 10978. https://doi.org/10.3390/app142310978 

Image source: Navajas Preciado et al., 2024; SL Fruit Service

Andrea Giovannini
University of Bologna (ITA)


Cherry Times - All rights reserved

What to read next

A new (non-destructive) method to identify decay and ripening stage of cherries

Post-harvest​

07 Dec 2023

The approach shows excellent performance in cherry recognition. It is remarkable that the training time of Swin Transformer and MLP was only 78.43 seconds (when in the absence of MLP the training time was 551.24 seconds) and that their recognition accuracy peaked at 98.5%.

Yamagata Beniou: Japan’s giant new cherry variety becomes a premium gift

Production

08 Jul 2025

Yamagata Beniou cherries are gaining popularity for their sweet taste, crisp texture, and heat resistance—perfect for the gift market. With over 3,000 producers and 70 tons expected in 2025, they rise as Sato Nishiki faces a decline due to adverse weather conditions.

In evidenza

Foliar applications of calcium and biostimulant based on Ascophyllum nodosum to improve sweet cherry quality

Production

01 Jan 2026

Ultrasound and nanobubble treatments are transforming postharvest cherry management in Chile. Physiological indicators such as pitting, electrolyte leakage and respiration help assess treatment impact and preserve cherry quality for up to 45 days in cold storage.

New physiological indicators for assessing the post-harvest quality of cherries

Quality

01 Jan 2026

The use of ultrasound and nanobubbles in post-harvest cherry storage in Chile opens up new possibilities. Physiological indicators such as pitting, electrolyte levels allow the effectiveness of treatments to be assessed and fruit storage to be improved by up to 45 days.

Tag Popolari