How genetics shapes cherry flavor: from sweet sorbitol to tart malic acid

01 Jul 2025
20

Sweet cherries are prized for their flavor, a balance of sweetness and acidity, but achieving consistent quality is challenging due to environmental and genetic variability.

While past studies focused on traits like size and color, the genetic basis of flavor components—sugars and acids—remains poorly understood.

Climatic conditions and ripening stages further complicate predictability, leading to uneven fruit quality.

In climacteric fruits like peaches, major genes for acidity are known, but sweet cherries, being non-climacteric, lack such insights. Additionally, consumer demand for sweeter, less acidic cherries underscores the need for genetic solutions.

Genetic investigations in sweet cherries

Based on these challenges, a deeper investigation into the genetic regulation of cherry flavor was essential.

Published on November 6, 2024, in Horticulture Research, a team from Clemson University and Spain’s CITA investigated the genetics of sweet cherry flavor using five populations (372 trees).

They measured sugars (glucose, fructose, sorbitol) and acids (malic, quinic) over two years, identifying 20 stable quantitative trait loci (QTLs).

Key findings include a major QTL on chromosome 4 for sweetness and one on chromosome 6 for acidity. The study, combining multi-family QTL mapping and haplotype analysis, provides the first genetic blueprint for flavor traits in this non-climacteric fruit.

Key results and implications

The study revealed that glucose and sorbitol are the most stable sugars, with sorbitol showing the highest heritability (0.73) and correlation to sweetness.

Malic acid, the dominant acid, had strong genetic control (heritability 0.58) and overlapped with titratable acidity QTLs on chromosome 6.

Notably, a "hotspot" on chromosome 4 co-located QTLs for sweetness, ripening time, and firmness, suggesting pleiotropic effects—genes influencing multiple traits.

For breeders, this means selecting for early ripening may inadvertently reduce sugar content, a critical trade-off.

Breeding applications and future directions

Haplotype analyses identified specific genetic variants (e.g., H4-a for high sugar; H6-c for high acidity) that can guide breeding.

The team also found candidate genes, like FUN_022609 (linked to vacuolar acid storage), offering molecular targets for manipulation.

Surprisingly, sucrose—a minor sugar in cherries—had distinct QTLs compared to peaches, highlighting species-specific regulation.

The research underscores the complexity of flavor genetics, with multiple minor QTLs contributing to traits.

While environmental factors caused yearly variability, the stable QTLs provide a robust foundation for marker-assisted breeding to enhance flavor consistency.

Expert insights and consumer impact

Dr. Ana Wünsch, senior author of the study, stated: "Our work bridges a critical gap in sweet cherry breeding by linking specific genetic markers to flavor traits.

The chromosome 4 and 6 QTLs are game-changers—they allow us to predict sweetness and acidity early in breeding programs.

Sorbitol’s stability is particularly exciting, as it offers a reliable target for improving sweetness regardless of environmental fluctuations."

This research equips breeders with tools to develop cherries tailored to market preferences, such as sweeter or less acidic varieties, faster and more efficiently.

By leveraging haplotype data, growers can select parent trees with optimal genetic profiles, reducing trial-and-error in orchards.

The study also opens avenues for gene-editing techniques to fine-tune flavor compounds. Beyond cherries, insights into non-climacteric fruit genetics could benefit crops like strawberries.

For consumers, the promise is clearer: consistently delicious cherries year-round.

Future work will validate candidate genes and explore interactions between ripening and flavor, ensuring climate-resilient quality in a warming world.

Text and image source: .newsgram.com


Cherry Times - All rights reserved

What to read next

Biotechnological innovations in the control of Drosophila suzukii: techniques and perspectives

Crop protection

05 Nov 2024

Traditional management methods fail to fully control Drosophila suzukii. New innovative strategies are being developed and adopted, including the 'sterile insect technique', 'X-shredding' and the 'transgenic sexing strains' technique.

Comparing rootstocks: each one has its own physiological characteristics

Rootstocks

24 Oct 2023

The rootstocks obtained by in vitro methods resulted in a higher percentage of plants. The percentage of grafted plants was higher when 'Pi-ku 1' or 'Gisela 5' rootstocks were used, even though the height of the plants was reduced.

In evidenza

Native cherry trees better support local moths in Massachusetts landscapes

Crop protection

01 Jul 2025

A scientific study confirms native moths thrive best on cherry trees native to Massachusetts. Non-native species slow growth and raise mortality in larvae. Native trees are crucial for preserving biodiversity and supporting birds and insects in gardens and cities.

How genetics shapes cherry flavor: from sweet sorbitol to tart malic acid

Breeding

01 Jul 2025

Researchers from Clemson University and Spain’s CITA discovered the genetic basis of sweetness and acidity in sweet cherries. With QTL mapping and haplotype analysis, breeders can now develop better-tasting, more stable varieties tailored to consumer preferences in Europe.

Tag Popolari