Physiological models help predict the blooming date

05 Jan 2024
1077

In models based on plant physiology, certain parameters including the timing of the release of endodormance (t1) and the onset of ontogenetic development (t1*), remain to be optimised because due to the impossibility of directly observing these phases, they are often not included.

The potential consequences of missing or misinterpreting the ecodormancy phase could be substantial when it comes to predicting both the cold requirements of fruit trees and the blooming date, especially in the context of climate change.

An investigation conducted by researchers at the Faculty of Life Sciences of the Humboldt-Universität of Berlin (Germany), compares three phenological models (abbreviated as M1, M2 and M3) to predict the date of flowering in cherry cv. 'Summit' in an experimental orchard located in Berlin-Dahlem.

The study covers the growing seasons from 2011/12 until 2019/20 for the development of the model and 2020/21-2022/23 for its validation. The M1 model is based on an inverse modelling methodology in which the cold and heat requirements for the ontogenetic development of 'Summit' were optimised exclusively using observed flowering data.

M2 and M3, on the other hand, are more physiologically grounded due to the incorporation of biological knowledge at the outset; thus, the model parameters were computed precisely during the designated developmental phases. M3, a recently devised three-phase model, incorporates the abscisic acid (ABA) content of 'Summit' flower buds during the ecodormancy phase (t1 → t1 *) and the onset of ontogenetic development (t1 *).

Timing of t1 and t1*, as well as the level of bud ABA during ecodormancy, are crucial parameters for a physiological modelling approach, according to the results. It is probable that bud ABA concentrations also regulate ecodormancy in other perennial crops

The inclusion of bud ABA levels in future phenological models will require the modelling of bud ABA levels and their dynamics. Physiological studies that involve phenology modelling also require multi-year data, despite the fact that this is difficult to obtain and uncommon when metabolites are involved.

The conclusions that can be derived from solely optimised phenology models are hampered by the limitations of these models, as demonstrated by this research. The extended ecodormancy phase, which lasts an average of 82 days at the study site, introduces a significant potential for misinterpretation of biological processes. This was unequivocally illustrated through the utilisation of model M1.

This is also feasible when physiological processes are disregarded, for example when phenological modelling approaches are applied to large-scale phenological datasets. This study demonstrates that greater physiological understanding is required for the advancement of phenological modelling.

Additionally, it is important to mention that the scope of this research was limited to the sweet cherry cultivar 'Summit', which was cultivated in the Berlin-Dahlem area. The restriction to 'Summit' has, nevertheless, facilitated a more comprehensive understanding of the dormant stages exhibited by this 'model plant'.

While this research does not propose a universally applicable model for the initiation of sweet cherry blossom, it does provide guidance for the advancement of dependable and physiologically grounded phenology models, moving away from the current reliance on simplistic statistical methods.

Source: Chmielewski, Frank-M., and Klaus-Peter Götz. 2023. "Towards a Physiological Modeling of Sweet Cherry Blossom", Horticulturae 9, 11: 1207. https://doi.org/10.3390/horticulturae9111207  

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Nanoparticles to interrupt dormancy and anticipate vegetative recovery

Tech management

02 May 2024

Research conducted between Chinese and Saudi Arabian universities show that the combination of α-Fe2O3 nanoparticles and gibberellic acid efficiently break bud dormancy in sweet cherry trees in a short period of time reducing abscisic acid levels and inducing bud break.

What are the biggest challenges for Peru? Interview with Gerd Burmester

Breeding Markets Varieties

08 Nov 2023

Peruvians face several challenges, but according to Gerd Burmester, director of Vecs Peru, there are several reasons for this negative result, but the main one has to do with the selected varieties, which are not adapted to the country's climatic conditions.

In evidenza

Monitoring water stress in 'Regina' cherry trees with thermal imaging

Tech management

02 Apr 2025

Thermal imaging is an innovative method to monitor water stress in 'Regina' cherry trees. Optimising irrigation, improving water management and reducing water wastage, without compromising productivity and fruit quality.

Drosophila suzukii, the 'Gene Drive' promises to collapse the population

Crop protection

02 Apr 2025

Gene Drive could revolutionise biological control of Drosophila suzukii, the red-eyed midge that threatens cherry trees and small fruits. Find out how this advanced biotechnology could lead to the collapse of the pest's population.

Tag Popolari