Preservation through magnetic supercooling: a new frontier for cherry post-harvest

17 Apr 2025
1528

In a recent study, Chinese researchers tested the use of oscillating magnetic fields to promote the supercooling of cherries, with the goal of improving their preservation without the typical damage caused by freezing.

Supercooling consists of maintaining food at temperatures below 0 °C without the formation of ice crystals. This technique, by enabling lower storage temperatures, inhibits bacterial growth and reproduction and slows down intracellular metabolism.

As a result, it allows for the extension of the shelf life of fresh produce, especially those that are particularly delicate, such as cherries, which tend to dehydrate, lose firmness, and degrade nutritionally.

Comparison of magnetic field intensities

In the study, the researchers compared the effects of two intensities of 50 Hz oscillating magnetic fields: a low-intensity field (~0.6 mT) and a higher-intensity field (~6 mT), both applied for 24 hours to cherries kept at −4 °C.

The control group did not receive any magnetic treatment. The results showed that with the 6 mT field, all cherries maintained a supercooled state, completely avoiding ice formation.

Figure 1. Schematic diagram of the experiment setup: (a) Overall system; (b) Test point of magnetic energy density and thermal couple.

In contrast, with the 0.6 mT field, only 60% of the samples avoided freezing, while in the control group all cherries froze. These data clearly demonstrate a positive correlation between magnetic field intensity and the ability to maintain supercooling.

Theoretical explanation of the effect

From a theoretical standpoint, the effect can be explained at both macroscopic and molecular levels. Thermodynamically, applying a magnetic field increases the Gibbs free energy of the water contained in plant tissues, making spontaneous ice crystal formation more difficult.

At the molecular level, the magnetic field weakens the hydrogen bonds within clusters of water molecules, reducing their size. Smaller clusters struggle to reach the critical radius required for ice nucleation, thereby slowing down or completely preventing the crystallization process.

Figure 2. The weight loss with and without OMF (Weight loss at 0.1 mT level was only counted for the samples that realized the supercooling effect. Data are presented as the mean ± standard deviation of the analyzed samples, with lowercase letters indicating significant differences compared to fresh samples (p < 0.05).

This dual effect explains why supercooling is more stable when an adequately strong magnetic field is applied.

Impact on fruit quality

In terms of quality, the results are equally interesting: cherries maintained in a supercooled state with the magnetic field showed only 1.3% weight loss, compared to 4.85% in the frozen control group, a reduction of 73.2%.

This suggests lower dehydration, likely due to better preservation of cell integrity and reduced metabolic activity at low temperatures.

Figure 3. Changes in color after different treatment (Color change at 0.1 mT level was only counted for the samples that realized the supercooling effect). 

The hardness of the supercooled samples remained similar to that of fresh fruit, while frozen control samples exhibited a significant loss of texture, due to the formation of ice crystals that rupture cellular membranes.

As for color, no significant differences were observed between the groups, likely because the skin protected the pulp from oxidative reactions.

Conclusions and future applications

This study demonstrates that magnetic-field-assisted supercooling is an effective strategy to extend cherries shelf life while preserving their quality.

Furthermore, identifying the minimum effective intensity (6 mT in this case) is crucial to making this technique more sustainable, as it allows for reduced energy consumption and makes industrial-scale application more accessible.

While the study focused on cherries, the approach could be extended to other fruits with similar characteristics.

Source: Huang, M., Kong, F., Tian, C., Leng, D., Zou, H., & Tang, M. (2025). Effects of Oscillating Magnetic Fields of Different Level of Intensity Magnitudes on Supercooling of Cherries. Food Biophysics, 20(1), 1-11. https://doi.org/10.1007/s11483-024-09914-x 

Source images: Huang et al., 2024; SL Fruit Service

Andrea Giovannini
University of Bologna (ITA)


Cherry Times - All rights reserved

What to read next

Chile: the 2024/25 season is preparing to set a new record with 115 million boxes

Production

23 Aug 2024

This is above the previous season’s figures (2023/24), in which 83 million boxes of cherries were produced, fewer than the 95 million boxes expected by the market. However, volumes of Santina are expected to double this season 175,353 tons, which could undoubtedly impact prices.

Turkey increases cherry and sour cherry production: new sustainable asphalt applications

Processed

01 Aug 2025

Turkey’s cherry and sour cherry production rises, prompting innovative ways to manage waste. Çurkova and Ege universities explore biochar from cherry residues to enhance asphalt durability and sustainability, supporting eco-friendly infrastructure.

In evidenza

Green Pack invests in technology and quality to protect Chilean cherries' reputation

Quality

02 Dec 2025

Green Pack Services, a Chilean cherry packing company, has upgraded its lines using advanced Italian tech. Focused on quality, cold chain efficiency, safety and automation, it aims to improve fruit condition and protect Chile’s reputation in international cherry markets.

Chilean cherries arrive in Rotterdam: first ocean shipment in week 45

Markets

02 Dec 2025

For the first time, Chilean cherries harvested in week 45 will be shipped to Europe by sea. CMR Group and C&L lead this early-season strategy, with arrival expected in Rotterdam on December 9. A game-changer for the European off-season fresh fruit market.

Tag Popolari