A research points to Calcium as a possible remedy against cracking

07 Jul 2023
2833

Fruit cracking is still one of the most critical factors for cherry production, mainly because no effective solutions are available to solve this problem. Cultivation under rain covers or in tunnels significantly reduces the occurrence of cracking (except in exceptional cases) but involves higher production costs.

Foliar applications of calcium salts (Ca) appear to reduce cracking, but the results available to date are still uncertain. Studying the phenomenon, several mechanisms have been proposed for the possible function of Ca in reducing cracking. First, the effects of Ca have been attributed to a decrease in osmotic potential, resulting in decreased water uptake.

However, based the Ca concentrations used, the fruit osmotic potential and the absence of significant turgor in the fruit, the decrease in osmotic strength can be considered negligible. The decrease in water absorption due to this osmotic effect can therefore be ruled out as a factor. Ca is also known to increase the cross-linking of cell wall components. This phenomenon is also present in the epidermis of sweet cherry fruits. In fact, the most likely explanation for the microscopic observations on cracking is a reduction of intracellular liquids (edema) resulting in increased cell-cell adhesion.

The studies conducted so far have thus led to the creation of the "egg-box model". In arriving at the creation of this model, studies have focused on the role of Ca in cell-cell adhesion during the pre-harvest and post-harvest periods, as well as in relation to fruit quality characteristics, such as flesh firmness. In the study conducted by researchers at the University of Hanover (Germany), on the other hand, the effect of calcium on epidermal cell wall thickening was evaluated through microscopic measurements both in vivo on peel sections and in vitro on extracted cell walls.

The results show that intracellular fluids are reduced with increasing CaCl2 concentration. Also in vitro, Ca chlorides reduced edema, thereby increasing cell wall adhesion of adjacent cells. However, the effect of pH must also be considered in this context, because unlike the effects of Ca, pH has an irreversible effect on edema. When cell walls previously exposed to a low pH are transferred to a solution with a higher pH, they retain a larger size but at the same time exhibit a lack of Ca binding.

In conclusion, the results show that Ca reduces cracking susceptibility by decreasing cell wall swelling. The divalent and trivalent cation salts significantly reduce cell wall edema, presumably by cross-linking the median pectin lamellae. The reduction in edema maintains and enhances cell-cell adhesion, an essential factor in reducing cracking susceptibility in sweet cherries. Thus, Ca salts are considered effective and have also shown an acceptable eco-toxicological profile.

However, their inability to effectively penetrate the healthy cuticle is a significant limitation. Ca must contact emerging fractures to exploit its potential to reduce cracking susceptibility. This can be achieved by applying Ca spray during or immediately after precipitation.

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Foliar phosphorus improves postharvest cherry quality in Southern Chile

Post-harvest​

26 Sep 2025

A study in Chile reveals that foliar phosphorus application significantly enhances postharvest quality of ‘Regina’ cherries, reducing issues like pitting, dehydration and browning during storage. A promising strategy for local cherry producers in Southern Chile.

INSTINCT project: artificial intelligence and traps to combat Drosophila suzukii

Crop protection

01 Oct 2024

“A big step forward would be knowing the exact moment when an infestation is about to occur,” says Silvia Schmidt, an entomologist at the Laimburg Research Center. “That way, nets and pesticides could only be used when truly necessary.”

In evidenza

How to prevent fruit cracking in Mediterranean orchards with advanced sensing

Tech management

01 Dec 2025

Fruit cracking leads to significant economic losses in Mediterranean orchards. Advanced sensing technologies and precision agriculture now allow growers to detect early stress signals, reduce fruit splitting, improve resource efficiency and enhance overall crop sustainability.

Self-care or failed responsibility? Cherry harvest reveals workplace safety gaps

Tech management

01 Dec 2025

Cherry season exposes the limits of self-care as a safety model. Is it a personal duty or a sign of poor risk management? When risks increase, only structured systems—not individual willpower—can ensure health and safety for all workers in the field.

Tag Popolari