Monitoring wetness on sweet cherry surfaces: new techniques to reduce cracking

22 Oct 2024
1616

Fruit cracking is a common physiological disorder in many sweet cherry-growing regions. It occurs when rain and/or high humidity concentrate in the period leading up to harvest, wetting the fruit’s surface. Water from rain, fog, cold exposure, or dew formation can cause the pericarp to split, damaging the fruit and leading to significant production losses.

With ongoing climate change, the risk of cracking is further amplified, making it increasingly necessary to find solutions to monitor and prevent this occurrence.

A recent study by German researchers introduces a new methodology based on the use of close-range remote sensing (CRRS) to monitor the temperature of sweet cherry fruit. Using LiDAR (Light Detection and Ranging) technology, combined with thermal imaging, they were able to create 4D point clouds representing the fruit with temperature annotations.

This approach allowed the researchers to study the temperature distribution in sweet cherry orchards and model the formation and persistence of wetness on the fruit's surface. Surface wetness is, in fact, one of the main factors contributing to cracking, and understanding its spatial and temporal distribution is essential for developing mitigation strategies.

The study’s results show that cracking is not necessarily linked to water absorption but rather to the duration of wetness presence on the fruit surface. Temperature models obtained through LiDAR 4D revealed that sweet cherry tree canopy density has a marginal impact on wetness formation.

Image 1: (a) Multisensor platform and example raw 3D point cloud of a cherry canopy. (b) Example of a scanned cherry tree (T5) with delimited spatial locations (1 to 6). ϕ is the polar angle with respect to the LiDAR position, ranging from 0 to π from the top to the bottom of the canopy. Fruit clusters marked in red were distributed in the six locations. Source: Tapia-Zapata et al., 2024.

However, monitoring surface temperatures made it possible to identify when the fruit approaches or exceeds the dew point, a key indicator of potential wetness formation. The study found that when the dew point threshold index (Ydew) exceeds a value of 1.17, no wetness forms on the fruit’s surface.

Temperature monitoring using this technology allowed the development of a predictive model for wetness formation, which can be applied in ecological studies to improve plant resilience to climate change. Furthermore, the ability to collect spatially precise data at the fruit level offers new opportunities to predict and consequently reduce sweet cherry cracking damage, improving production quality and minimizing losses.

In conclusion, the application of techniques like CRRS and LiDAR for temperature modeling in sweet cherry orchards represents an interesting development in cracking control solutions. This technology enables real-time fruit surface monitoring, identifying wetness formation risks, and potentially contributing to the development of integrated models to reduce cracking damage across the entire orchard.

Source: Tapia-Zapata, N., Winkler, A., & Zude-Sasse, M. (2024). Occurrence of Wetness on the Fruit Surface Modeled Using Spatio-Temporal Temperature Data from Sweet Cherry Tree Canopies. Horticulturae, 10(7). https://doi.org/10.3390/horticulturae10070757.
Image: SL Fruit Service

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

New Zealand boosts export campaign in Asia: excellent demand and online sales

Markets Press review

03 Jan 2024

The Chinese market, says Sharon Kirk of Southern Fruits International, has shown more interest in 26mm fruit and 1kg boxes this year. So far there has been very good demand and the fruit will continue to be available for purchase online throughout the season.

The secret behind the early cherries of Fruit Luxury (Huesca, Spain)

Planting systems

01 May 2023

FRUIT LUXURY COMPANY S.L., a family business located in Albalate de Cinca (Huesca), has six hectares of cherry trees cultivated in greenhouses with the aim of anticipating production and protecting them from bad weather such as rain, hail or wind.

In evidenza

Foliar applications of calcium and biostimulant based on Ascophyllum nodosum to improve sweet cherry quality

Production

01 Jan 2026

Ultrasound and nanobubble treatments are transforming postharvest cherry management in Chile. Physiological indicators such as pitting, electrolyte leakage and respiration help assess treatment impact and preserve cherry quality for up to 45 days in cold storage.

New physiological indicators for assessing the post-harvest quality of cherries

Quality

01 Jan 2026

The use of ultrasound and nanobubbles in post-harvest cherry storage in Chile opens up new possibilities. Physiological indicators such as pitting, electrolyte levels allow the effectiveness of treatments to be assessed and fruit storage to be improved by up to 45 days.

Tag Popolari