Monitoring wetness on sweet cherry surfaces: new techniques to reduce cracking

22 Oct 2024
1713

Fruit cracking is a common physiological disorder in many sweet cherry-growing regions. It occurs when rain and/or high humidity concentrate in the period leading up to harvest, wetting the fruit’s surface. Water from rain, fog, cold exposure, or dew formation can cause the pericarp to split, damaging the fruit and leading to significant production losses.

With ongoing climate change, the risk of cracking is further amplified, making it increasingly necessary to find solutions to monitor and prevent this occurrence.

A recent study by German researchers introduces a new methodology based on the use of close-range remote sensing (CRRS) to monitor the temperature of sweet cherry fruit. Using LiDAR (Light Detection and Ranging) technology, combined with thermal imaging, they were able to create 4D point clouds representing the fruit with temperature annotations.

This approach allowed the researchers to study the temperature distribution in sweet cherry orchards and model the formation and persistence of wetness on the fruit's surface. Surface wetness is, in fact, one of the main factors contributing to cracking, and understanding its spatial and temporal distribution is essential for developing mitigation strategies.

The study’s results show that cracking is not necessarily linked to water absorption but rather to the duration of wetness presence on the fruit surface. Temperature models obtained through LiDAR 4D revealed that sweet cherry tree canopy density has a marginal impact on wetness formation.

Image 1: (a) Multisensor platform and example raw 3D point cloud of a cherry canopy. (b) Example of a scanned cherry tree (T5) with delimited spatial locations (1 to 6). ϕ is the polar angle with respect to the LiDAR position, ranging from 0 to π from the top to the bottom of the canopy. Fruit clusters marked in red were distributed in the six locations. Source: Tapia-Zapata et al., 2024.

However, monitoring surface temperatures made it possible to identify when the fruit approaches or exceeds the dew point, a key indicator of potential wetness formation. The study found that when the dew point threshold index (Ydew) exceeds a value of 1.17, no wetness forms on the fruit’s surface.

Temperature monitoring using this technology allowed the development of a predictive model for wetness formation, which can be applied in ecological studies to improve plant resilience to climate change. Furthermore, the ability to collect spatially precise data at the fruit level offers new opportunities to predict and consequently reduce sweet cherry cracking damage, improving production quality and minimizing losses.

In conclusion, the application of techniques like CRRS and LiDAR for temperature modeling in sweet cherry orchards represents an interesting development in cracking control solutions. This technology enables real-time fruit surface monitoring, identifying wetness formation risks, and potentially contributing to the development of integrated models to reduce cracking damage across the entire orchard.

Source: Tapia-Zapata, N., Winkler, A., & Zude-Sasse, M. (2024). Occurrence of Wetness on the Fruit Surface Modeled Using Spatio-Temporal Temperature Data from Sweet Cherry Tree Canopies. Horticulturae, 10(7). https://doi.org/10.3390/horticulturae10070757.
Image: SL Fruit Service

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Mundoagro Capacita: new lectures on post-harvest and quality of the sweet cherry tree

Quality

13 Feb 2025

"All the post-harvest management will be reflected in the next harvest. Therefore, we must emphasize irrigation, nutrition, and summer pruning, among other things. We conduct all these checklists to achieve extraordinary quality fruit, which is what the markets demand from us.”

Traverse Bay Farms Launches “USA-Grown Cherries – Never Imported” Logo to Support Local Farmers

Markets

23 Apr 2025

Traverse Bay Farms introduces the “USA-Grown Cherries – Never Imported” logo to promote traceability, sustainability, and local sourcing. A bold move to support Michigan growers and ensure quality, transparency, and true American food pride.

In evidenza

Cherry rootstocks: final phase of genetic project concluded in southern Chile

Rootstocks

02 Feb 2026

Chile’s cherry rootstock genetic program ends its final stage with field trials of ten clonal selections, tested against climate and pathogen stress. The project aims to improve productivity and sustainability in the central-southern region of the country.

Tasmanian Cherries: +15% Output and Focus on Chinese New Year Exports

Markets

02 Feb 2026

Tasmanian cherry production is set to grow by 15% in the 2025/26 season, with larger and sweeter fruit. With no fruit fly and fast air freight, exports are aimed at Asian markets, targeting strong sales around the Chinese New Year celebrations in mid-February.

Tag Popolari