Phenological models for optimized orchard management

16 May 2024
2022

Prognosticated increases in annual temperatures and growth degrees-day (GDD) will have a substantial impact on fruit development stages such as shoot growth, blossoming, and harvesting time.

To maximize the adaptation of the cherry industry to future climate change scenarios, it is necessary to develop decision-making tools that optimise agronomic management, including fertiliser application, irrigation scheduling, and pest and disease control.

Therefore, phenological stage prediction through biomathematical models can serve as a dependable instrument for agronomic management. Phenological models commonly simulate phenological stages through the utilisation of heat accumulation (thermal time) or growth degrees-day.

The purpose of the research conducted in collaboration between the University of Talca and the Department of research, development and innovation in Curicò (Chile) was to develop and validate phenology models for eight sweet cherry varieties growing in the Maule Region of Chile: Sam, Lapins, Rainier, Royal D, Santina, Regina, Kordia, and Sweet Heart.

 The models utilised growing degree days as their foundation, and to incorporate the randomization introduced by measurement errors that could impact the prediction of phenological states, a stochastic monomolecular model was implemented. Four vegetative seasons were utilised to gather data to compile a dataset of phenological stages, from 2017 to 2021.

The findings indicated that the modified phenological scale of BBCH and GDD exhibited a statistically significant correlation (R2 values ranging from 0.96 to 0.98), encompassing all eight varieties. The variation of mean absolute error, root mean square error and model efficiency values was low during model validation. Lastly, the modified scale of BBCH was estimated by the monomolecular model with an error rate of less than 2%.

Furthermore, the incorporation of a stochastic methodology incorporates an element of unpredictability and uncertainty into the monomolecular models, mirroring the natural fluctuations and inherent variability that are observed during phenological development. Specifically, during the harvest stage, this analysis revealed that random disturbances can result in both underestimation and overestimation of phenological stages, thereby introducing uncertainty.

The stochastic monomolecular approach facilitates an enhanced comprehension of the prerequisites of crop phenology, thereby furnishing invaluable data for the purpose of monitoring crop development and enabling informed decision-making agricultural management decisions.

Nonetheless, it is essential to recognise that the selection of upper and lower limit temperatures for sweet cherry cultivation in the face of future climate change scenarios could be a major source of uncertainty. In relation to this subject, it is critical to recognise that frosts possess the capacity to alter the base limit temperature, while heatwaves can exert a substantial impact on the upper limit temperature.

By incorporating statistical and mechanistic modelling techniques, this study has furnished researchers with an all-encompassing comprehension of the phenology of cherries. Nevertheless, in order to incorporate the consequences of non-linear interactions involving heat accumulation, further model validation becomes necessary.

Source: William Campillay-Llanos, Samuel Ortega-Farias, Luis Ahumada-Orellana, Development and validation of phenological models for eight varieties of sweet cherry (Prunus avium L.) growing under Mediterranean climate condition, Scientia Horticulturae, Volume 326, 2024, https://doi.org/10.1016/j.scienta.2023.112711.

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Nanoparticles to interrupt dormancy and anticipate vegetative recovery

Tech management

02 May 2024

Research conducted between Chinese and Saudi Arabian universities show that the combination of α-Fe2O3 nanoparticles and gibberellic acid efficiently break bud dormancy in sweet cherry trees in a short period of time reducing abscisic acid levels and inducing bud break.

Qicun (China), the capital of greenhouse cherries: technology, cooperation and record harvests

Production

24 Mar 2025

The greenhouses in Qicun, China, are becoming a model for cherry cultivation thanks to advanced techniques, valuable varieties and cooperative management that improves productivity and guarantees high quality fruit, ready for the market as early as mid-April.

In evidenza

Pre-cooling and sweet cherry fruit cracking: physiological and molecular evidence

Post-harvest​

30 Dec 2025

A study from China shows that pre-cooling sweet cherries at 4°C can reduce cracking by over 50%. Cultivars Jiahong and Hongdeng react differently, but both benefit. Physiological and genetic data support the effectiveness of this low-impact postharvest solution.

Could South African cherries be the next global contender?

Markets

30 Dec 2025

South Africa is strengthening its cherry industry and aims to access the Chinese market by the 2026/27 season. With earlier harvest times than Chile, expanding planted area, and growing export potential, it could become a key supplier during weeks of limited global availability.

Tag Popolari