Understanding sweet cherry water needs through sap flow measurements

05 Sep 2024
1132

Water management is crucial in agriculture, especially for certain species like the sweet cherry. In a recent study, South African researchers examined the water consumption patterns of non-irrigated sweet cherry trees using the "Heat pulse velocity" (HPV) method.

This method measures sap flow, a parameter directly related to the tree's water use. The study was conducted near the city of Ficksburg, South Africa, from September 2017 to December 2018, and analyzed the plants water consumption during the growth stages.

The results highlighted the dynamic nature of water use in sweet cherry trees. During the flowering stage, the plants daily transpiration rates were relatively low, ranging from 1.2 to 3.5 liters per day, and increased progressively with fruit development (4.5 L/day).

Later, during the fruit ripening stage, a significant decrease in tree transpiration was observed (1.1 L/day). This reduction was mainly attributed to the onset of water stress caused by hot and dry weather conditions that led to soil drying. The study highlighted the sweet cherry tree's sensitivity to soil moisture levels, especially during critical growth stages, where water stress can significantly impact the tree's overall health and, consequently, yield.

The data showed a direct relationship between sap flow and environmental factors such as solar radiation, air temperature, and vapor pressure deficit (VPD). These factors were positively correlated with sap flow, meaning that as these environmental parameters increased, the tree water use increased as well. However, during prolonged periods of high temperatures and dry conditions, tree transpiration rates decreased.

The study also introduced the "fraction of transpirable soil water" (FTSW) parameter as a crucial indicator for water use management. The FTSW threshold varied depending on the different fruit growth stages and approached a value of 1.0 under various stress levels.

FTSW exceeded 0.4 when trees utilized stored soil water, while transpiration rates declined during hot days. The stress coefficient, which indicates the degree of water stress, ranged from 0.45 to 0.65 depending on the growth stage, further emphasizing the importance of monitoring soil moisture to optimize water use.

In conclusion, the study provides valuable insights into the water needs of sweet cherry trees, particularly in semi-arid conditions like those in South Africa. By using sap flow sensors (HPV method), the study analyzed the trees' responses to varying soil moisture levels and environmental conditions.

The results underscore the importance of water and soil moisture management, especially during critical growth stages, to mitigate water stress and improve yield. As climate change continues to threaten global water availability, such research helps to understand plant behavior in order to develop more efficient agricultural practices.

Fonte: Tharaga PC, Tesfuhuney WA, Coetzer GM and Savage MJ (2023) Heat pulse velocity method for determining water requirements in rainfed sweet cherry trees (Prunus avium L.). Front. Hortic. 2:1155862. doi: 10.3389/fhort.2023.1155862.
Immagine: Tharaga et al

Andrea Giovannini
Università di Bologna (IT)


Cherry Times - Tutti i diritti riservati

What to read next

Cherryscan G7: MAF Roda's new software to facilitate quality system management

Quality

29 May 2024

‘With this new interface, an operator can work with the machine after only a few hours of training,’ says María Cabello, marketing and communications manager at MAF Roda, ‘a system fully adapted to very short campaigns and high staff turnover.

Effect of multifunctional nets on high-density cherry crops

Covers

20 Jun 2023

At the IX International Cherry Symposium in Beijing there was much discussion on cherry covers and their impact on fruit growth and quality. Here a summary of the work presented by Andrea Giovannini and the Fruit Tree Ecophysiology group of DISTAL - University of Bologna.

In evidenza

Premium cherry genetics: from DNA to quality and postharvest resilience

Breeding

15 Aug 2025

From size to shelf life, genetics shape the future of sweet cherries. From genome mapping to key genes PavCNR12 and PaCYP78A9, and with CRISPR and genomic selection, new varieties are bred to be larger, tastier, and more resilient across the entire supply chain.

New cherry rootstocks from Serbia to face the climate change challenge

Rootstocks

15 Aug 2025

A Serbian research on 27 native cherry genotypes identifies resistant, adaptable, and low-vigor rootstocks, ideal for sustainable and resilient fruit growing. A key step to meet climate challenges in modern agriculture across Europe and beyond.

Tag Popolari