Control of Drosophila suzukii through mass trapping

12 Mar 2025
1564

Drosophila suzukii is an invasive insect that has become a key pest of soft-fleshed fruits such as cherries over the last decade. Current pest control strategies often rely on broad-spectrum insecticides, which also affect non-target insects.

To improve this aspect, research is focused on developing more sustainable and safer alternative control strategies. A promising approach is mass trapping, which uses traps containing a killing agent combined with specific attractants to selectively reduce the target pest population.

Evaluating synthetic baits for trapping

A recent study evaluated the effectiveness of traps with controlled-release synthetic baits, comparing them to apple cider vinegar (ACV), used as a reference. The trials were conducted over two years using grid-based trapping schemes with variable distances (5, 10, and 15 meters) and at different times of the season.

The results show trap interference and overlapping attraction radii for both synthetic baits and ACV. In spring, apple cider vinegar demonstrated a greater potential for mass trapping, while from June onwards, synthetic baits performed as well or better than ACV.

Figure 1. Contour plots for the trials in summer at 10 and 15 m inter-trap spacing. Each point of the 4 × 4 grids represents the pooled D. suzukii (male and female) trap catches for a trap position over the whole trial period (August/September) and the four replicate grids. Source: Klymans et al., 2022.

Optimizing trap density

The study recommends a trap density between 75 and 200 units per hectare in spring and between 90 and 300 units per hectare in summer for controlling Drosophila suzukii. However, these numbers vary depending on the attractant used, environmental conditions, and the season.

In particular, in September, the synthetic bait EL2 (kairomone-based) required only about 25 traps per hectare, demonstrating potential as a long-lasting attractant. The study suggests that mass trapping could be integrated into Drosophila suzukii management, helping to reduce insecticide use and promoting more sustainable agricultural practices.

Advantages of mass trapping

The behavioral characteristics of Drosophila suzukii make a large-scale approach with well-distributed traps particularly effective. Females lay eggs inside fruits while they are still ripening, making preventive strategies essential to contain population spread before oviposition occurs.

Another advantage of mass trapping is the ability to monitor D. suzukii populations, allowing targeted interventions only when necessary. Traps with synthetic baits have proven particularly effective in capturing a significant number of individuals, reducing pest presence without extensive chemical use.

This method can therefore help preserve biodiversity, avoiding negative effects on pollinators and other organisms.

Figure 2. Number of D. suzukii flies per trap per sex and attractant in August. Jittered points and boxplots represent the 64 replicate traps and their distribution, respectively. Black triangles represent the estimated marginal mean number of D. suzukii flies per trap (GLMM). Source: Klymans et al., 2022.

Future research and implementation

Further studies are needed to determine the optimal bait doses and their real impact on D. suzukii populations in the long term. Additionally, it will be important to assess their effectiveness under different climatic conditions and crop types to better adapt control strategies.

Mass trapping with controlled-release baits could become a valuable strategy in integrated pest management programs for controlling Drosophila suzukii. If future research confirms the effectiveness of this technique, farmers could benefit from a sustainable and economically viable option to protect their cherry orchards while reducing their reliance on chemical products.

Source: Clymans, R., Van Kerckvoorde, V., Thys, T., De Clercq, P., Bylemans, D., & Beliën, T. (2022). Mass trapping Drosophila suzukii, what would it take? A two-year field study on trap interference. Insects, 13(3), 240. https://doi.org/10.3390/insects13030240

Images: Bayer Crop Science; Klymans et al., 2022.

Andrea Giovannini
University of Bologna


Cherry Times - All rights reserved

What to read next

The Chilean model and prospects for cherry growth in Peru

Production

12 Dec 2025

In the last decade, Chile turned cherries into a premium export worth over US$ 1.8 billion, driven by ideal climate, advanced technical management and booming Chinese demand. Andean areas of Peru show potential, but would require infrastructure and adapted strategies.

Cereza del Jerte: 1.3 million kg certified and new varieties on the rise

Specialties

14 Aug 2025

The Cereza del Jerte PDO ends the 2025 season with 1.3 million kg certified, driven by Picota and the introduction of new varieties like Lapins, Van and Burlat. A climate-friendly season with top-quality fruit and an extended market availability period.

In evidenza

Tart cherry: a new ally against inflammation and metabolic disorders

Health

23 Jan 2026

Two clinical studies confirm that daily intake of concentrated tart cherry extracts significantly reduces inflammatory markers such as CRP and blood urate levels, opening new perspectives for the functional role of tart cherry in supporting long-term metabolic health.

Controlled atmosphere to extend “Regina” cherries shelf life: effects on internal browning and quality

Post-harvest​

23 Jan 2026

A study from Chile proves that controlled atmosphere with 10-15% CO2 and 10% O2 extends Regina cherries' shelf life up to 40 days while preserving quality and flavor—an effective solution to improve logistics for long-distance exports, especially to Asia.

Tag Popolari