Control of Drosophila suzukii through mass trapping

12 Mar 2025
1337

Drosophila suzukii is an invasive insect that has become a key pest of soft-fleshed fruits such as cherries over the last decade. Current pest control strategies often rely on broad-spectrum insecticides, which also affect non-target insects.

To improve this aspect, research is focused on developing more sustainable and safer alternative control strategies. A promising approach is mass trapping, which uses traps containing a killing agent combined with specific attractants to selectively reduce the target pest population.

Evaluating synthetic baits for trapping

A recent study evaluated the effectiveness of traps with controlled-release synthetic baits, comparing them to apple cider vinegar (ACV), used as a reference. The trials were conducted over two years using grid-based trapping schemes with variable distances (5, 10, and 15 meters) and at different times of the season.

The results show trap interference and overlapping attraction radii for both synthetic baits and ACV. In spring, apple cider vinegar demonstrated a greater potential for mass trapping, while from June onwards, synthetic baits performed as well or better than ACV.

Figure 1. Contour plots for the trials in summer at 10 and 15 m inter-trap spacing. Each point of the 4 × 4 grids represents the pooled D. suzukii (male and female) trap catches for a trap position over the whole trial period (August/September) and the four replicate grids. Source: Klymans et al., 2022.

Optimizing trap density

The study recommends a trap density between 75 and 200 units per hectare in spring and between 90 and 300 units per hectare in summer for controlling Drosophila suzukii. However, these numbers vary depending on the attractant used, environmental conditions, and the season.

In particular, in September, the synthetic bait EL2 (kairomone-based) required only about 25 traps per hectare, demonstrating potential as a long-lasting attractant. The study suggests that mass trapping could be integrated into Drosophila suzukii management, helping to reduce insecticide use and promoting more sustainable agricultural practices.

Advantages of mass trapping

The behavioral characteristics of Drosophila suzukii make a large-scale approach with well-distributed traps particularly effective. Females lay eggs inside fruits while they are still ripening, making preventive strategies essential to contain population spread before oviposition occurs.

Another advantage of mass trapping is the ability to monitor D. suzukii populations, allowing targeted interventions only when necessary. Traps with synthetic baits have proven particularly effective in capturing a significant number of individuals, reducing pest presence without extensive chemical use.

This method can therefore help preserve biodiversity, avoiding negative effects on pollinators and other organisms.

Figure 2. Number of D. suzukii flies per trap per sex and attractant in August. Jittered points and boxplots represent the 64 replicate traps and their distribution, respectively. Black triangles represent the estimated marginal mean number of D. suzukii flies per trap (GLMM). Source: Klymans et al., 2022.

Future research and implementation

Further studies are needed to determine the optimal bait doses and their real impact on D. suzukii populations in the long term. Additionally, it will be important to assess their effectiveness under different climatic conditions and crop types to better adapt control strategies.

Mass trapping with controlled-release baits could become a valuable strategy in integrated pest management programs for controlling Drosophila suzukii. If future research confirms the effectiveness of this technique, farmers could benefit from a sustainable and economically viable option to protect their cherry orchards while reducing their reliance on chemical products.

Source: Clymans, R., Van Kerckvoorde, V., Thys, T., De Clercq, P., Bylemans, D., & Beliën, T. (2022). Mass trapping Drosophila suzukii, what would it take? A two-year field study on trap interference. Insects, 13(3), 240. https://doi.org/10.3390/insects13030240

Images: Bayer Crop Science; Klymans et al., 2022.

Andrea Giovannini
University of Bologna


Cherry Times - All rights reserved

What to read next

Effective strategies to improve calcium translocation in cherry orchard

Post-harvest​

02 Oct 2024

Calcium is not very mobile throughout the plant. The lack of transport capacity makes it difficult to reach the growing fruits. Another issue is that Calcium follows the water flow through the xylem, which means that its absorption is closely tied to transpiration capacity.

CITH, new bi-coloured cherry varieties from India

Varieties

17 Jun 2024

ICAR - Central Institute of Temperate Horticulture Kashmir (India) has identified and collected variability from the century-old varieties Biggareau Napoleon, Bigarreau Noir Grossa, Guigne Noir Hative. Currently, the institute has a germplasm bank with 30 genotypes of cherries.

In evidenza

Washington Cherry Season 2025: A Story of Quality, Challenge and Collaboration

Production

20 Nov 2025

The 2025 cherry season in Washington delivered top-tier fruit, but growers faced severe market setbacks. Despite high volumes and great quality, prices dropped. CFS reviews the challenges, market delays, and future strategies to support orchard investors.

Quality and nutrients of cherries: comparing the Santina, Lapins and Regina varieties

Quality

20 Nov 2025

INIA research in Chile examines how mineral composition affects fruit quality in three major cherry cultivars: Santina, Lapins, and Regina. The study highlights genotype‑specific nutrient interactions and offers guidance for more precise, data‑driven fertilization strategies.

Tag Popolari