German study reveals how calcium chloride can solve the fight against cracking

27 Jun 2024
2069

Researchers at the University of Hannover have made an important discovery that could revolutionize the sweet cherry industry.

Their research, published in the Journal of the American Society for Horticultural Science, reveals how the application of calcium can reduce the occurrence of macrocracking in sweet cherries, a common issue causing significant economic losses for cherry growers worldwide.

The Crux of Cracking

Macrocracking in sweet cherries is not just a superficial defect, but a deep-seated problem affecting the fruit's integrity. When cherries crack, they become susceptible to microbial infections and rapid deterioration, rendering them unsellable and unsuitable for consumption.

This has long been a thorn in the side of producers, who have struggled to find a reliable solution to this pervasive issue. The study conducted by the team at the University of Hannover, led by Professor Moritz Knoche, delves at the cellular level to understand how calcium acts as a fortifying agent.

The research shows that calcium strengthens the cell walls of cherries, improving their structural integrity and reducing the likelihood of them cracking under environmental pressures, such as rain or temperature fluctuations.

Calcium: A Microscopic Shield

The key to the effectiveness of calcium lies in its ability to intervene in the early stages of crack formation. When calcium is applied to cherries, it promotes the cross-linking of cell wall components, which in turn modulates the activity of enzymes.

This process results in a more robust cell wall, capable of withstanding greater mechanical stresses. Interestingly, the study found that even at low concentrations, calcium can prevent the expansion of microscopic cracks into larger, visible macrocracks.

This discovery is particularly significant because it suggests that even minimal applications of calcium can have a substantial impact on the quality and longevity of the fruits.

Study Methodology

The study on the role of calcium in reducing macrocracking in sweet cherries employed a multifaceted approach to uncover the mechanisms at play. Here is a detailed analysis of the methodologies used:

Advanced Imaging and Biochemical Analysis

Researchers utilized state-of-the-art imaging techniques to monitor the development of macrocracks in real-time. This allowed them to observe the effects of calcium on the cell walls of the fruit as cracks formed and expanded.

Biochemical analyses complemented these observations, providing insights into changes in cell wall composition and enzymatic activity influenced by calcium.

The "Zipper Model"

Professor Moritz Knoche’s team at the University of Hannover proposed the "zipper model" to explain the cracking process in cherry fruits.

This model offers a consistent explanation aligning with all experimental results obtained so far. It suggests that when calcium contacts the cell wall through a microscopic fissure in the cuticle, it inhibits the extension of this microscopic fissure into a larger macrocrack.

Calcium Chloride (CaCl2) Spray Applications

The study involved multiple applications of calcium chloride (CaCl2) sprays on cherry fruits. These applications were performed under simulated rain conditions in a mist chamber, significantly reducing the percentage of macrocracked fruits.

Researchers also dipped the fruits in CaCl2 solutions, observing a decrease in macrocracking depending on the concentration.

Nickel Staining and Cationic Gold Labeling

To analyze the effects of calcium on cell walls, the team used nickel staining of polygalacturonate on freehand sections and cationic gold labeling of anionic binding sites in cell walls. These methods allowed visualization of the distribution and impact of calcium within the cell walls.

Secondary Ion Mass Spectrometry

Analytical detection of calcium ions, specifically isotopes 40Ca and 44Ca, was conducted using secondary ion mass spectrometry. This technique provided precise measurements of calcium concentrations, further clarifying its role in strengthening the cell walls of cherry fruit.

By combining these various methodologies, the study achieved a comprehensive understanding of how calcium contributes to reducing macrocracking in sweet cherries, paving the way for practical applications in cherry cultivation.

Implications for the Future

The implications of this research are far-reaching. With a better understanding of how calcium works, cherry growers can optimize the use of calcium-based sprays to enhance fruit quality and reduce post-harvest losses.

This could lead to more stable production rates, higher quality fruit in the market, and greater profitability for growers.

Moreover, the findings provide a framework for addressing similar issues in other fruit crops, potentially leading to improvements in agricultural practices overall. As the fruit industry continues to seek sustainable solutions to production challenges, studies like this one from the University of Hannover serve as beacons for innovation and progress.

Source: Nature World News
Image: SL Fruit Service


Cherry Times - All rights reserved

What to read next

Pollinators in Belgian cherry orchards: pan-traps vs netting methods

Tech management

18 Jul 2025

A study in Belgium’s cherry orchards assessed wild pollinator diversity using pan-traps and netting methods. Each technique captured different insect groups, showing that combining both provides complete data for monitoring biodiversity and planning effective conservation actions

Jerte Cherries (Spain): blossom begins, first harvest in 40 days

Production

08 Apr 2025

In Spain’s Jerte Valley, over two million cherry trees are now in bloom: the first cherries will be harvested in 35 to 40 days. The D.O.P. adds new certified varieties like Van, Lapins, and Burlat, extending the season until August and focusing on high-quality production.

In evidenza

Chile and Drosophila suzukii: sterile flies and Argentina partnership to protect cherries

Crop protection

02 Jan 2026

Chile, the world’s top exporter of fresh cherries, is tackling the growing threat of Drosophila suzukii through an advanced strategy that includes the Sterile Insect Technique and a cross-border partnership with Argentina to safeguard fruit quality and global market access.

Foliar applications of calcium and biostimulant based on Ascophyllum nodosum to improve sweet cherry quality

Production

01 Jan 2026

Ultrasound and nanobubble treatments are transforming postharvest cherry management in Chile. Physiological indicators such as pitting, electrolyte leakage and respiration help assess treatment impact and preserve cherry quality for up to 45 days in cold storage.

Tag Popolari