New opportunities for improving fruit firmness through the genome sequencing of Chinese cherry

10 Oct 2024
268

The Chinese cherry, Prunus pseudocerasus, is an important crop in China with a cultivation history spanning thousands of years. However, a limiting factor for its widespread commercial distribution is the fruit’s low firmness, which reduces its ability to be transported over long distances.

Thanks to recent studies, researchers have managed to obtain a detailed analysis of the Chinese cherry genome, paving the way for new possibilities in the genetic improvement of this species and, consequently, its broader distribution.

The sequencing of the tetraploid genome of the Chinese cherry was carried out using cutting-edge sequencing technologies, such as PacBio HiFi and Oxford Nanopore, which enabled the production of a high-resolution reference genome. The main difficulty in sequencing this species lies in its tetraploid and highly heterozygous nature. With the newly haplotype-resolved genome, researchers were able to thoroughly analyze the genomic structure of the species.

Phylogenetic and genomic analyses revealed that Prunus pseudocerasus is a stable autotetraploid species, derived from a genome duplication event that occurred approximately 139.96 million years ago. By comparing the Chinese cherry genome with those of other Prunus species, such as sweet cherry (Prunus avium) and wild cherry (Prunus pusilliflora), it was observed that the two species diverged around 18.34 million years ago. 

However, one of the main differences between these species concerns fruit texture: Prunus pseudocerasus has much softer fruits compared to sweet cherry.

Image 1. Source: Songtao Jou.

The study demonstrated that this difference in texture is linked to the composition of the cell wall. In the case of the Chinese cherry, the fruit's cell wall contains lower amounts of cellulose, hemicellulose, and pectin compared to sweet cherry, especially during the ripening phase. This difference was linked to the activity of specific genes involved in pectin synthesis, particularly “GalAK-like” and “Stv1,” two key genes identified in the comparative analysis between the Chinese and sweet cherry genomes.

Researchers discovered that the overexpression of these two genes leads to a significant increase in fruit firmness. Specifically, the increased activity of GalAK-like and Stv1 results in an accumulation of protopectin, a precursor of pectin. Pectin is a fundamental component of the cell wall, and its presence confers rigidity and resistance to the fruit. Transient transformation experiments confirmed that increasing the expression of these genes enhances fruit firmness.

Therefore, this study lays an important foundation for understanding the genetic mechanisms involved, while also providing useful information for the genetic improvement of the Chinese cherry, opening up new possibilities for selecting varieties with harder and more resistant fruits.

In conclusion, the study of the Chinese cherry genome has provided important insights into the genetic basis of fruit firmness, offering new prospects for genetic improvement. Furthermore, understanding the molecular mechanisms underlying important quality traits, such as fruit texture, will enable breeders to develop Chinese cherry varieties with improved transport resistance.

Source: Jiu S, Lv Z, Liu M, Xu Y, Chen B, Dong X, Zhang X, Cao J, Manzoor MA, Xia M, Li F, Li H, Chen L, Zhang X, Wang S, Dong Y, Zhang C. (2024). Haplotype-resolved genome assembly for tetraploid Chinese cherry (Prunus pseudocerasus) offers insights into fruit firmness. Horticulture Research 8,11(7): uhae142. https://doi.org/10.1093/hr/uhae142.
Image: NAVER

Andrea Giovannini
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

ExpoCerezo 2023: thanks to ANA Chile® a meeting dedicated to varieties and post-harvest

Events

28 Sep 2023

On Thursday, 14 September, growers of different cherry varieties were invited by ANA Chile® to the 4th EXPOCerezo 2023, where participants were able to learn about the advances in the technical knowledge of varieties to obtain the best fruit potential and share their experiences.

US season 2024: 355,000 tonnes expected, slight increase over 2023

Production

03 Jul 2024

"The national total number is 355,000 tonnes, technically one could say it is up three-tenths of a percentage point from 2023. But if you exclude Michigan, which was not counted in the total last year, there is a decrease of 5.9 per cent."

In evidenza

Post-harvest browning: heat treatment study from Chile to understand its physiology

Post-harvest​

06 Dec 2024

Internal browning, a physiological disorder that affects the quality of cherries, is a major defect occurring during post-harvest (Palacios-Peralta et al., 2022). The incidence of internal browning has increased in recent years due to longer travel times to export destinations.

Predictions on sour cherry quality via an analysis of cultivars and climatic factors

Production

06 Dec 2024

A study analyzed 10 sour cherry cultivars focusing on varietal characteristics, climatic factors, and fruit and stone weight. These data highlight significant variability among the cultivars and underscore the importance of genetic and environmental factors.

Tag Popolari