Fungus S16 boosts sweet cherry drought tolerance on Gisela 5 rootstock

19 Aug 2025
1414

Drought is one of the main abiotic stress factors threatening sweet cherry production. This species is particularly sensitive to water stress, largely due to its shallow root system, especially when using dwarfing rootstocks such as Gisela 5.

A recent study has proposed a new approach to improve sweet cherry resilience to drought by exploiting the potential of a dark septate endophyte (DSE) fungus, identified as S16. Conducted by Chinese researchers, the study integrated physiological, metabolomic, transcriptomic, and rhizosphere microbiome characterization data, providing a comprehensive and detailed view of the mechanisms activated by the plant–endophyte interaction.

Effects of S16 on plant physiology

Inoculation of Gisela 5 with S16 showed clear effects on growth and physiology, especially under simulated water stress conditions. Treated plants displayed greater root and shoot biomass, increased relative water content (RWC), reduced electrolyte leakage, and higher photosynthetic activity.

Furthermore, an increase in defensive antioxidants was recorded: ROS levels (H2O2 and O2) were lower in inoculated plant tissues, thanks to higher activity of enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). These results show how S16 can “prime” the plant to respond more effectively to stress through a genuine physiological and biochemical priming effect.

Metabolomic and transcriptomic responses

A more in-depth metabolomic analysis revealed strong activation of flavonoid and phenylpropanoid biosynthesis, metabolites known for their protective role against oxidative stress. In particular, the content of cinnamic acid (CA), a key metabolite of the phenylpropanoid pathway, increased significantly in plants treated with S16.

This compound proved so important that it was also tested via exogenous application: CA at 0.5 mM replicated and amplified the beneficial effects observed with fungal inoculation, improving drought tolerance by reducing ROS, increasing proline levels, and activating antioxidant defences.

In parallel, transcriptomic analyses revealed a deep reorganization of the gene expression profile in Gisela 5 roots. Under stress conditions, many genes were upregulated in S16- inoculated plants compared to control. The most involved pathways included amino acid metabolism (phenylalanine, glycine, threonine), carbohydrate metabolism, lipid metabolism, and the biosynthesis of flavonoids and anthocyanins.

Microbial community and agricultural prospects

Inoculation with S16, especially when combined with exogenous cinnamic acid treatment, also produced a shift in rhizosphere microbial composition toward a community more favorable to plant health, increasing the abundance of growth-promoting bacteria (including Sphingomonas, Stenotrophobacter, Parcubacteria) and beneficial fungi belonging to the orders Sordariales and Hypocreales, such as Humicola and Fusarium.

This suggests that S16 acts not only at the endophytic level but also influences soil microbiology, creating an environment that favors plant survival under adverse conditions.

In conclusion, the endophytic fungus S16 has proven to be a promising resource for sweet cherry cultivation in drought-prone environments. Its ability to activate protective metabolic pathways, enhance antioxidant activity, promote the accumulation of key metabolites, and improve the rhizosphere microbial community makes it an ideal candidate for agronomic applications aimed at improving drought tolerance.

Source: Pang, Q., Qu, D., Li, W., Zhou, J., Yang, Y., Wang, L., Zheng, D., Liu, Y., Zhang, R., Yang, L., Wu, F., Zhang, X., & Su, H. (2025). Muti-omics insights the enhancement of drought tolerance in sweet cherry with dark septate endophyte S16. Plant Physiology and Biochemistry, 222, 109716. https://doi.org/10.1016/j.plaphy.2025.109716 

Image source: SL Fruit Service

Andrea Giovannini
University of Bologna (ITA)


Cherry Times - All rights reserved

What to read next

Montmorency sour cherry complex genome sequenced

Breeding

26 May 2023

Researchers at Michigan State University conducted a study to identify the genes associated with Montmorency tart cherry. The team created the first annotated genome of the Montmorency tart cherry and identified the DNA segments responsible for each gene.

New El Niño damage: bad weather favours new developments for Drosophila suzukii in Chile

Crop protection

10 Nov 2023

Despite the good climatic conditions for the spread of Drosophila suzukii, experts point out that growers have gained more knowledge about the pest in previous years, which enables them to control it more effectively and minimise risks.

In evidenza

Chilean cherries in China: critical issues and remedies in post-harvest management

Post-harvest​

24 Dec 2025

Jessica Rodríguez analyses the problems of rot in Chilean cherries exported to China in 2024/25, highlighting causes, impacts and solutions adopted. The report highlights critical issues in post-harvest management, sanitisation and product storage.

Real-time detection of cherry ripeness thanks to a new algorithm developed in China

Production

24 Dec 2025

CMD-YOLO is a new lightweight and fast algorithm that detects cherry ripeness in real time. Developed in Yunnan, it overcomes the limitations of traditional methods, improving accuracy and speed for more effective and smarter precision farming.

Tag Popolari