Fungus S16 boosts sweet cherry drought tolerance on Gisela 5 rootstock

19 Aug 2025
1105

Drought is one of the main abiotic stress factors threatening sweet cherry production. This species is particularly sensitive to water stress, largely due to its shallow root system, especially when using dwarfing rootstocks such as Gisela 5.

A recent study has proposed a new approach to improve sweet cherry resilience to drought by exploiting the potential of a dark septate endophyte (DSE) fungus, identified as S16. Conducted by Chinese researchers, the study integrated physiological, metabolomic, transcriptomic, and rhizosphere microbiome characterization data, providing a comprehensive and detailed view of the mechanisms activated by the plant–endophyte interaction.

Effects of S16 on plant physiology

Inoculation of Gisela 5 with S16 showed clear effects on growth and physiology, especially under simulated water stress conditions. Treated plants displayed greater root and shoot biomass, increased relative water content (RWC), reduced electrolyte leakage, and higher photosynthetic activity.

Furthermore, an increase in defensive antioxidants was recorded: ROS levels (H2O2 and O2) were lower in inoculated plant tissues, thanks to higher activity of enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). These results show how S16 can “prime” the plant to respond more effectively to stress through a genuine physiological and biochemical priming effect.

Metabolomic and transcriptomic responses

A more in-depth metabolomic analysis revealed strong activation of flavonoid and phenylpropanoid biosynthesis, metabolites known for their protective role against oxidative stress. In particular, the content of cinnamic acid (CA), a key metabolite of the phenylpropanoid pathway, increased significantly in plants treated with S16.

This compound proved so important that it was also tested via exogenous application: CA at 0.5 mM replicated and amplified the beneficial effects observed with fungal inoculation, improving drought tolerance by reducing ROS, increasing proline levels, and activating antioxidant defences.

In parallel, transcriptomic analyses revealed a deep reorganization of the gene expression profile in Gisela 5 roots. Under stress conditions, many genes were upregulated in S16- inoculated plants compared to control. The most involved pathways included amino acid metabolism (phenylalanine, glycine, threonine), carbohydrate metabolism, lipid metabolism, and the biosynthesis of flavonoids and anthocyanins.

Microbial community and agricultural prospects

Inoculation with S16, especially when combined with exogenous cinnamic acid treatment, also produced a shift in rhizosphere microbial composition toward a community more favorable to plant health, increasing the abundance of growth-promoting bacteria (including Sphingomonas, Stenotrophobacter, Parcubacteria) and beneficial fungi belonging to the orders Sordariales and Hypocreales, such as Humicola and Fusarium.

This suggests that S16 acts not only at the endophytic level but also influences soil microbiology, creating an environment that favors plant survival under adverse conditions.

In conclusion, the endophytic fungus S16 has proven to be a promising resource for sweet cherry cultivation in drought-prone environments. Its ability to activate protective metabolic pathways, enhance antioxidant activity, promote the accumulation of key metabolites, and improve the rhizosphere microbial community makes it an ideal candidate for agronomic applications aimed at improving drought tolerance.

Source: Pang, Q., Qu, D., Li, W., Zhou, J., Yang, Y., Wang, L., Zheng, D., Liu, Y., Zhang, R., Yang, L., Wu, F., Zhang, X., & Su, H. (2025). Muti-omics insights the enhancement of drought tolerance in sweet cherry with dark septate endophyte S16. Plant Physiology and Biochemistry, 222, 109716. https://doi.org/10.1016/j.plaphy.2025.109716 

Image source: SL Fruit Service

Andrea Giovannini
University of Bologna (ITA)


Cherry Times - All rights reserved

What to read next

Evaluation of cherry quality parameters based on ripening stage

Quality

26 Nov 2024

Cherry quality refers to a set of attributes that evoke a sense of well-being when consumed. All these attributes vary between different varieties and even within the same fruit, depending on the ripening stage.

1353 containers of Chilean cherries arrive in China 28 days late

Markets

24 Feb 2025

Although the power supply of the containers was maintained and the cold chain was not interrupted, according to Antonio Walker, president of SNA, who inspected the containers on board, the fruit arrived in very poor condition.

In evidenza

Foliar phosphorus improves postharvest cherry quality in Southern Chile

Post-harvest​

26 Sep 2025

A study in Chile reveals that foliar phosphorus application significantly enhances postharvest quality of ‘Regina’ cherries, reducing issues like pitting, dehydration and browning during storage. A promising strategy for local cherry producers in Southern Chile.

Mineral nutrition management in cherry orchards: predictive model from Greece

Tech management

26 Sep 2025

A Greek study has developed a predictive model to estimate nutrient loss in cherry orchards. Based only on fresh fruit yield data, it enables more accurate and sustainable fertilization management while actively promoting recycling of pruning and leaf residues.

Tag Popolari