Cherry cracking is also due to hormonal imbalances

24 Jun 2024
1945

When the commodity value of fruit is compromised due to physiological disorders such as cracking, producers suffer substantial economic losses. It is widely recognised that the fundamental mechanisms of cracking are intricate and extensive.

It has been reported that several factors, including genetic characteristics, environmental stress conditions, orchard management conditions, fruit growth rate, post-harvest storage factors, physiological, biochemical, anatomical factors, and plant hormones, influence the high frequency of fruit cracking or splitting.

It is important to note that different fruit species or cultivars exhibit different degrees of susceptibility to cracking under identical outdoor environmental conditions, such as light, temperature, wind and rainfall, as well as under identical orchard management conditions, including light, nutrition, irrigation, minerals and growth regulators.

It is known that during the entire plant life cycle, numerous hormones act, even antagonistically, to regulate various biological processes. This is also the case with gibberellins, which promote growth, and abscisic acid, which inhibit it. Normal fruit growth and development are significantly influenced by the correct balance of these two hormones.

If, however, hormonal imbalances occur, the main consequence is fruit cracking not only during the growth, development and ripening process but also during post-harvest storage. The metabolism and signalling pathways of gibberellins and abscisic acid have been extensively studied and the primary components, such as the genes encoding the primary biosynthesis enzymes, are well characterised.

Despite this, our understanding of the hormonal mechanisms that lead to cracking in fruits is still inadequate. Researchers from several Chinese institutes and universities summarised the progress made worldwide in understanding the effects of endogenous gibberellin and abscisic acid content in fruits and exogenous hormone treatments on fruit cracking.

They also provided genetic insights into their function and possible interactions responsible for modulating fruit cracking. It has been preliminarily demonstrated that increased levels of gibberellins and abscisic acid in fruits are directly related to the occurrence of fruit cracking. Furthermore, recent publications have indicated that the expression of genes related to the biosynthesis of gibberellins and abscisic acid is essential for the development of cracking.

These genes may therefore be the main candidates that regulate fruit cracking. They can be further utilised in molecular selection efforts to generate enhanced resistance to cracking, compatible with the production requirements of future fruit cultivars

However, molecular clues associated with cracking are mainly based on correlations, as direct evidence is still lacking and the regulatory mechanisms underlying the antagonism of gibberellin and abscisic acid signalling pathways in the control of fruit cracking are largely unknown.

Further genetic analysis and molecular identification are needed to elucidate these specific aspects.  The advancement of the understanding of the molecular mechanisms underlying the action of gibberellins and abscisic acid in the control of fruit cracking coordination will not only contribute to the development of new cracking-resistant cultivars, but will also have important theoretical implications for the development of integrated fruit cracking prevention and control measures.

Source: Zhang, M.; Liu, Y.; Chen, Z.; Zhi, Z.; Wang, A.; Yue, H.; Li, F.; Zhang, S.; Zhu, G. Progress in Fruit Cracking Control of Gibberellic Acid and Abscisic Acid. Forests 2024, 15, 547. https://doi.org/10.3390/f15030547.
Image: SL Fruit Service

Melissa Venturi
University of Bologna (IT)


Cherry Times - All rights reserved

What to read next

Application of plant phospholipids improves cellular resistance against cracking

Tech management

16 Dec 2024

Biotens is a product that integrates into the plasma membranes of plant cells because it has the same composition (vegetable phospholipids). Biotens, due to this characteristic, does not cover the stomata and does not interfere with the dynamism of the plant's plasma membran.

New course on cherry post-harvesting: over 700 participants in Mundoagro's video lessons

Events

31 Jan 2025

The course is taught by consultant Patricio Morales. As the professor explained, in January 2025 we will already be entering the heart of the late post-harvest management of the cherry tree, which is very important in terms of production to be harvested in the new season.

In evidenza

A new manual on growing and pruning fruit trees

Planting systems

20 Feb 2026

The Ontario Ministry of Agriculture (Canada) publishes a technical guide on the cultivation and pruning of stone and pome fruit trees. Focus on peach, plum, sweet cherry and pear trees, with guidance on work efficiency, crop load management and disease control.

S.L.E.C.I.: the innovative irrigation system that reduces water consumption while maintaining yield and quality in sweet cherry

Tech management

20 Feb 2026

A Bulgarian study compares the SLECI system with drip irrigation in sweet cherry orchards. Water use reduced up to 14 times with similar yields and higher irrigation water productivity. A sustainable solution for drought-prone areas with limited energy resources.

Tag Popolari